Microstructured LCMO: Electroresistance effects

Christianne: groupmeeting 01-10-07 (APL **91** 062101 (2007))

Manganites

- Manganites have a metal-insulator transition at T_c
- Inhomogeneous state → phase separation → percolative conductance leads to nonlinear IV-curves.

LCMO

- 4pt. IV curves, size: $t = 8 \text{ nm}, w = 5 \mu \text{m}$
- asymmetry, nonlinearity and hysteresis!
- partly probing the bridge but current leakage

STO

- 4pt. IV curves 30 sec etched (350 V; 10 mA) STO, size: 2.6 x 1.5 mm²
- conducting STO, resistance comparable to the bridge

Kan et al. Nat. Mater. 4 (2005):

- sheet resistance Ar-etched STO (300 V)
- 1 min (light blue line) comparable to our sheet resistance

Solution: short O₂ plasma etch restores insulating state of STO

LCMO (treated)

• 4pt. IV curves, size: t = 8 nm, $w = 5 \mu \text{m}$

- linear + symmetrical IV curves for T = 10 300 K
- no Electroresistance for J : 2.5 10^5 A/m^2 -1.5 10^9 A/m^2

Electroresistance

Sun et al. APL 86 (2005):

- 2pt. IV curves, size: t = 120 nm, w = 200 μm
- current processing \rightarrow <u>J = 1.6 10⁹ A/m²</u>
- Electroresistance + contact resistance

Zhao et al. APL 86 (2005):

- 4pt. R vs. T size: t = 100 nm, w = 50 μm
- strongly decreasing R as function of I
 → J = 2 10⁵ A/m² 1.2 10⁹ A/m²
- Electroresistance (T_p no shift) + heating (T_p shift to lower T)
- others report T_p shift to higher T like MR

Our samples: very homogeneous even on micrometer scale ?!

- IV curves 2 pt. vs. 4 pt. at 10 K
- dV/dI (inset) shows clear nonlinearity of the 2pt. IV due to large contact resistance

- VI curve (2 pt.) at 50 K shows resistance switching, Joule heating?
- estimation indicates that Joule heating is significant

Conclusions

- No electroresistance is observed in our (treated) LCMO microbridges.
- Peculiarities in IVs are caused by:
 - conducting STO
 - large contact resistance
 - Joule heating

Recent results

bridge: 1 x 20 μ m²; t = 10 nm Au contacts

bridge \perp steps; measured in PPMS during cooling

T_{p1} ~ 190 K; T_{p2} ~ 145 K

Recent results

bridge: 1 x 20 μ m²; t = 10 nm Au contacts

bridge \perp steps; R vs. T from IV curve; I = 0.6 μ A

Τ_p ~ 170 K

Zero current feature 110 K to 140 K

4 x 4 μm rms roughness: 0.24 nm

L477 1.0 deg STO 1 x 1 µm rms roughness: 0.25 nm rm

300 x 300 nm rms roughness: 0.187 nm

Number of events

Flat STO for STM L478

15 x 15 µm

rms roughness: 2.01 nm

Clean IPA, ethanol, acetone ultrasound + cotton tip 5 x 5 μm rms roughness: 2.38 nm

Topography [nm]

Topography [nm]

Flat STO for STM L478 CLEAN!!

15 x 15 µm

rms roughness: 0.238 nm

1.5 x 1.5 μm rms roughness: 0.196 nm

0.6

