

A tuning fork force microscope

Roel Smit, Belén Lasanta, Carlos Arroyo, Andrés Castellanos Gómez, Marisela Vélez, Gabino Rubio Bollinger, Nicolás Agraït

Scanning Probe Microscopy

Measures a quantity F that is fed into a PID. This determines the difference to a desired value and changes the position of the tip accordingly, using an actuator.

Quantity	Instrument
Current	STM
Force	AFM
Magnetic Force	MFM
Workfunction	KPM
Force Gradient	??? (TF AFM)

The interaction potential

Large κ leads to a relatively insensitive tuning fork

Small κ makes the surface too strong leading to a "snapping" of the tip $\kappa = \frac{1}{4} Yb \left(\frac{t}{L}\right)^3 \approx 2 \text{ kNm}^{-1}$

Etching commercial wire in KOH

Etching annealed wire in KOH

The annealed wire in CaCl₂

Equilibration of the Prongs

Precise Compensation

\mathbf{f}_{0}	$\Delta \mathbf{f}$	Q	Expected f ₀₀
(Hz)	(Hz)	(*1000)	(Hz)
27778	30	0.9	-
27502	20	1.4	-
27173	11.0	2.5	26405
27041.9	8.3	3.6	26406
26906.2	6.3	4.3	26465
26797.9	5.2	5.2	26502
26768.6	4.9	5.5	26506
26706.6	4.6	5.8	26520
26663.6	4.4	6.1	26529
26599.1	4.2	6.3	26535
26547.0	4.3	6.2	26545

Compensation of the mass by solder paste of which each particle of approx. 50 μ m diameter changes the frequency by 10 Hz

The final candidate

The Tuning Fork at low T

Calibration

 $\frac{A}{V_{AC}} = O$

1.85±0.15 nm/nA_{AC}

 $Q = \frac{\kappa A^2}{\pi V_{AC} I_{AC} / \omega_{00}}$

κ = 2.8±0.2 kN/m

The Microscope

Electrical Compensation

Need PLL

The observed change in resonance frequency with distance can be of the order of 10 Hz. Our resonance had a width of 0.2 Hz, making constant frequency excitation impossible.

We thus need to excite at the resonance \rightarrow We have need of a phase locked loop (PLL)

Problems with course approach

•At low amplitudes the frequency signal responds sooner to the presence of the surface, but the electrical signal is smaller.

$$A \cdot \sin(\omega t + \boldsymbol{\phi}) \cdot \cos(\omega t) = \frac{1}{2} A \sin(2\omega t + \boldsymbol{\phi}) + \frac{1}{2} A \sin(\boldsymbol{\phi})$$

Since the error signal in phase and amplitude are coupled these PIDs will have a lot of cross-talk.
Although frequency appears the logical choice, amplitude is far more reliable for high Q tuning forks.

Combined AFM STM

The scanning

STM vs AFM on Au(111)

Clean touch on Au(111)

10 9 8 Conductance (2e²/h) 7 · Count 6 -5. 4 3 2 1 0 4,0 200 nm H = 8,98 nm F17_D001.img [id_ topo]

Imaging Au clusters on Glass

Hybrid samples

"Graphene" on Silicon Oxide

The Tuning Fork AFM

- Is hybrid
- Is nonviolent
- Is cool
- Is sharp
- Sees colors

- •Can measure both conductive and nonconductive surfaces
- •ls a non-contact technique and therefore does not destroy the substrate
- •Does not need any adjustments for low temperature use
- •Has vertical resolution sub-nm, horizontal 10's of nm.
- •In combination with a bulk tip readily usable for spectroscopy.

Noise behavior understood

@ 4.2 K
Thermal noise measured by taking the average of 200
FFT-spectra each of 16.7*10⁶ data points. (one night)

Kelvin effect

Double tips

