LCNO From thin films to nanowires

By: Christianne Beekman Groupmeeting 08-09-05

Outline

Introduction

- Complex phase diagram
- Double exchange
- Magnetoresistance

Miscut substrates Growing LCMO nanowires

- Sol-gel process with alumina templates
- Pt as contact material

LCMO

Perovskite lattice

- $t_{\rm 2g}$: localized core electrons
- e_g: delocalized electron

Double exchange

Hopping mediates the onset of the ferromagnetic state

Double exchange

Hopping rate determined by:

Transfer integral $\tilde{t} = t \cos(\Delta \theta_s / 2)$

 $\Delta \theta_s$: difference in spin angle between the Mn ions

One electron bandwidth

$$W \propto \frac{\cos^2(\theta)}{l_{Mn-O}^{3.5}}$$

 θ : Mn-O-Mn bond angle, I_{Mn-O}: Mn-O bond length

Jahn Teller distortions

DE model does not explain the localization above $T_{\rm C}$

Strong electron-lattice coupling can cause localization

Competition between polaron formation and delocalization due to hybridization which can be described by the ratio,

$$\lambda = \frac{E_{latt}}{t_{eff}}$$

 t_{eff} : 'bare'electron kinetic energy, E_{latt}: energy gained by e-ph coupling without hybridization

Above T_c : activated polaron hopping Below T_c : e_g electrons delocalize, onset of spin ordering

External field : different magnetic domains align reducing resistance, CMR effect

Bulk : $T_c \approx 270 \text{ K} \rightarrow$ lattice mismatch with STO substrate causes strain which reduces T_c

Miscut substrates

AFM picture of 0.2° miscut substrate

← 2.3 x 2.3 µm —

No visible steps

AFM picture of 0.18° miscut substrate terminate layer TiO₂

──── 737 x 737 nm ───**→**

Clearly visible steps

Miscut substrates

Optical lithography

Structure sizes:

Diameter: ~ 5 mm

Contactpads: ~ 350 x 400 µm

Strips: $w = \sim 40 \ \mu m$ I = ~ 500 \ \ \ m T_c reduction:

✓ Strain due to lattice mismatch with substrate

✓ Internal "chemical" pressure: decrease radius dopant ions

T_c enhancement:

External pressure: oxygen ions more densely packed

Reduction of sample size: nanopowders & nanowires

LCMO nanowires

Shankar et al. Appl. Phys. Lett., Vol. 84, No. 6, 9 February 2004

Nanowire: T_c is enhanced compared to bulk single crystal

LCMO nanowires

Growth process: Sol-gel

Polymer assisted nucleation of cation complex in pores of alumina templates

Sol: La_2O_3 , $CaCO_3$, $Mn(NO_3)_2$ & ethylene glycol

LCMO nanowires

Shankar et al. nanotech., Vol. 15, 1312, 2004

Growth process: Sol-gel

Polymer assisted nucleation of cation complex in pores of alumina templates

Nucleation on the walls

Pt as a contact material

Contact geometry can be written with FEI nanosem

Pt strip: t = 500 nm w = 800 nm l = 6.5 µm

Pt as a contact material

Pt as a contact material

Bad interface?

Future research

- ✓ Surface treatment for miscut substrates
- Measure the transport properties of LCMO strip for different angles relative to terraces
- Develop the sol-gel procedure for the growth of LCMO nanowires

Tip radius of curvature ~ 136 nm

Needle has same tree like surface as the coated tip (LCMO) suggesting LCMO only grows near the tip.

SEM imaging of LCMO (La0.67Ca0.33MnO3) coated W-tip During sputtering cooling water was leaking into the vacuum, probably causing corrosion. Expected layer thickness 25-50 nm (sputter rate 50nm/hour)

From images:

tip radius of curvature ~ 6 um (before coating radius of curvature should be ~ 20 nm) roughness order of magnitude ~ 1 um

W-tip coated with LCMO

■ H = 2 T (for 60 sec) at 10 K 100 150 200 250 300 T (K) -∎-C **▖**▋▋▋▋<mark>▋</mark>▌ Ms = 1E-4 emu Corrected forparamagnetic behavior of W -2500 0 2500 5000 7500 10000 H (Oe)

