Investigating the Insulator to Metal Transition in CMR La<sub>0.67</sub>Ca<sub>0.33</sub>MnO<sub>3</sub> via Scanning Tunneling Spectroscopy.







F. Galli, S.J. Kelly, I. Komissarov and J. Aarts. Nano Ned User Meeting 06-07/03/2007 Progress Report



### Coupled Metal-Insulator/Ferromagnetic-Paramagnetic Transition in CMR Manganites

=> mixed valence via doping (Mn<sup>3+</sup> & Mn<sup>4+</sup>)

## Zero field transport:

#### **Above Tc**

=> electron scattering dominated by polarons (eph. coupling mediated by J-T distortion at Mn<sup>3+</sup>)
=> paramagnetism

#### **Below Tc**

=> metallicity
=> ferromagnetism ↔ double exchange

### <u>Colossal Magneto Resistance (CMR)</u>

Applied magnetic field aligns spins, decreases PM (insulating) & increases FM (metallic). The effect changes resistance of several decades.



### **Engineering the Electronic Properties Locally**

### **Spatial Electronic Phase Separation (PS)**

=>Coexisting but spatially distinct insulating & metallic domains =>Associated with *strained manganite films* grown on lattice mismatched substrates such as LaAlO<sub>3</sub> (~2.3%), SrTiO<sub>3</sub> (~-0.6%), and MgO (~8%). =>*Strain free* films (NdGaO<sub>3</sub> has a ~0.23% lattice mismatch with La<sub>0.7</sub>Ca<sub>0.3</sub>MnO<sub>3</sub>) are considered homogeneous (no PS).



=> Influencing/inducing phase separations with artificial structures

### **Motivation**

=> What happens to the local DOS while going through such a dramatic phase transition (homogeneous systems)? STM/STS probes locally the DOS.

=> Finger print of the metallic phase in order to carefully study the homogeneities (or inhomogeneities) of the low temperature (metallic) phase.

=> DOS mapping at low bias V (0-500mV or less) where maximum change is seen in the MIT, versus high (1-2V) biases (less sensitive to changes in the MIT).

# Scanning Tunneling Microscopy and Spectroscopy

### Variable Temperature He-gas flow STM

=> 4K to 300K => 0 to +/- 8 T => home made STM => range: RT: 3.6μm or 1.5mm 4K: 0.7μm or 0.3mm





### **Scanning Tunneling Spectroscopy (STS)** → measure sample DOS

- scan topography
- at each pixel take I-V
  - stop scanning  $\rightarrow$  x,y fixed
  - •feedback off  $\rightarrow \Delta z$  fixed
  - •sweep bias ±V
  - •measure I<sub>t</sub>
  - differentiate I-V curve for dI/dV
  - •Alternatively, measure directly dI/dV with lock-in technique.
  - •No scanning, point spectroscopy.



### La<sub>0.7</sub>Ca<sub>0.3</sub>MnO<sub>3</sub> (50nm Film) on NdGaO<sub>3</sub> Substrate Matching => Strain Free



#### **R-T Transport Measurement**

=> Sharp transition at Tp=280 K indicative of unstrained and electronically homogeneous film as expected for LCMO on lattice matched NGO substrate



#### Temperature Dependent Point Spectroscopy

=>Low Bias to study changes of DOS around  $E_{F}$ 

=>I-V curves average of 5-20 I-V sweeps

=>I-V data shows metallic behavior well below  $T_{\rm P}$  changing to insulating character around  $T_{\rm P}$ 

=>Metallic-like I-V curve zero-bias slope indicates significant conductance

=>Insulating-like I-V curves are flat around zero bias, indicative of gap-like character



## **Tunneling Barrier Contribution (LCMO(50nm)/NGO)**

=>Tip-Sample tunneling current across a tunneling barrier: barrier, t, sample DOS,  $N_s$ . and tip DOS,  $N_f$ 

$$I(s,V,W,T) = c \int_{-\infty}^{\infty} N_s(E + rac{eV}{2}) N_t(E - rac{eV}{2}) t(s,E,W) imes [f(E - rac{eV}{2}) - f(E + rac{eV}{2})] dE$$

=>Let's assume Nt and Ns as being both "flat" and try to deconvolute tunneling barrier part. Any deviation from a flat DOS will represent an energy dependence of the DOS itself. At low temperatures, we can approximate the Fermi-Dirac distribution as a step function, and simplify the above relation as:

$$I(s, V, W) \propto N_s N_t \int_{-\frac{eV}{2}}^{\frac{eV}{2}} t(s, E, W) dE$$

=>Model the tunneling barrier as one-dimensional and trapezoidal,

$$t(s,E,W)=e^{[-2ks\sqrt{2(W-E)}]}$$

=>Now we can relate conductance, dI/dV, to the tunneling barrier,

$$rac{dI}{dV} \propto N_t N_s[t(s,rac{eV}{2},W)+t(s,-rac{eV}{2},W)]$$

=>If we fit this function to our conductance data, we can estimate the tip-sample distance, s (~10Å), and the work function, W (~1-4eV), and use these parameters to calculate the tunneling barrier as a function of temperature.

# dl/dV with Tunneling Barrier Fit (LCMO(50nm)/NGO)

=> dI/dV computed from I-V data (numerically differentiate).

=> Tunneling barrier fit (red) using higher bias data.

=> Difference clearly shows depletion of DOS in transition region is not associated with tunneling barrier effect



See also Mitra et al., PRB 71, 094426 (2005) - PRB 68, 134428 (2003)

#### Normalized dI/dV: Temperature Dependent DOS (LCMO(50nm)/NGO)





=> DOS indicates depletion, maximum below  $T_P$ , filling up again in the tail of the transition. => Temperature dependent *Coulomb gap? Pseudo gap* -precursor of metallic phase- ? => Only reported before by Mitra et al., PRB 71, 094426 (2005)

## Conclusions

=>Observed strong temperature dependence of DOS via Tunneling Spectroscopy at low bias voltage.

=> Observe depletion of electronic states around Tp. Before the onset of the metallic phase the depletion gap fills up.

=> Depletion provides mechanism for significant conductance drop. Filling up of the gap is precursor of the metallic phase.