Spatial Electronic Phase Separation in Manganites

Scanning Tunneling Spectroscopy (STS)

• tunneling current given by,

 $I_t(\Delta z) = I_0(v_{\text{bias}}, \text{Dos}) e^{-2\kappa\Delta z}$

- Δz tip-surface distance
- V_{bias} tip-surface potential difference
- DOS tip & sample density of states
- κ proportional to surface work function

- STM topography
 - fix V_{bias} maintain $I_{\text{set}} = I_{t}$
 - adjust tip height, z, while scanning across surface
 - electronically homogeneous sample, z(x,y) values map topography
 - inhomogeneous sample, changes in DOS modify I_0
 - insulating material may require minimum V_{bias}

Scanning Tunneling Spectroscopy

Conductivity Map Measure dI/dV Directly

"Standard"Lock-In Technique

bias modulated with small sinusoidal voltage

 $V_{bias} + dv \sin(wt) \rightarrow I_t = f(V_{bias} + dv \sin(wt))$

- for small dv, tunneling current, I_t, can be approximated, Taylor Series $I_t(V_{bias} + dv \sin(wt)) \approx I(V_{bias}) + \frac{dI}{dV}\Big|_V dv \sin(wt)$
- IV converter measures tunneling current

$$V_{IV} = A_{IV}I_t(V_{bias} + dv\sin(wt)), \ A_{IV} \approx 1v/nA$$

- lock-in shifts reference signal phase $V_t \sin(\omega_t t + \theta)$
- lock-in PSD multiplies V_{IV} and V_L

$$V_{psd} = V_{IV}V_L\sin(\omega_L t + \theta) = \left[A_{IV}I(V_{bias}) + A_{IV}\frac{dI}{dV}\Big|_{V_{bias}}dv\sin(wt)\right]V_L\sin(\omega_L t + \theta)$$
$$= A_{IV}I(V_{bias})V_L\sin(\omega_L t + \theta) + \frac{1}{2}A_{IV}\frac{dI}{dV}\Big|_{V_{bias}}dvV_L\cos[(\omega - \omega_L)t - \theta] - \frac{1}{2}A_{IV}\frac{dI}{dV}\Big|_{V_{bias}}dvV_L\cos[(\omega + \omega_L)t + \theta]$$

• for $\omega = \omega_L$,

$$V_{psd} = A_{IV}I(V_{bias}) V_L \sin(\omega_L t + \theta) + \frac{1}{2} A_{IV} \frac{dI}{dV} \Big|_{V_{bias}} dV V_L \cos[\theta] - \frac{1}{2} A_{IV} \frac{dI}{dV} \Big|_{V_{bias}} dV V_L \cos[2\omega_L t + \theta]$$

• lock-in low-pass filter eliminates all ac components

$$V_{low-pass} = \frac{1}{2} A_{IV} \frac{dI}{dV}\Big|_{V_{bias}} dv V_L \cos[\theta] \xrightarrow{DualPhase} \frac{1}{2} A_{IV} \frac{dI}{dV}\Big|_{V_{bias}} dv V_L \longrightarrow \text{ΘNOISE} \neq \text{ω rejected}$$

Earlier Results: Matthias

Recent Results STS in Applied Magnetic Field

 $\begin{array}{l} \mbox{Material} \\ \bullet La_{0.7}Ca_{0.3}\mbox{MnO}_3 \ (100 \ nm) \ on \ Nb-doped \ SrTiO_3 \\ & \longrightarrow \ strained \ (~tensile \ 0.6\%) \end{array}$

•Nd doped enhance STO conduction

•sample L407

Method

•conductance map with lock-in, $V_{\text{bias}}=2v$

no tunneling V < 2.0v

•light = insulating

•dark = metallic

•T=50K

•measured in He gas

Observations

similar to Matthias
limited correlation to topography
increased AMF → increased metallic area (
some increase of insulating area (
reversible? reproducible?

Other Results: Becker et al.

STS with Varied Temperature

Other Results: Mitra *et al.*

STS with Varied Temperature

1.2 µm

•La_{0.7}Ca_{0.3}MnO₃ (50 nm) on NdGaO₃

- LCMO epitaxial and strain free on NGO
- •I-V (not conductance map)
- lock-in conductance map with Vbias=100mV
- •measured in HV with Pt-Ir tip

Observations

•strong suppression of tunneling current at $T_c = 268K$ •strain free \rightarrow no electronic phase separation T=265K •topography with step (0.4 nm) & terrace structure sharp MIT & low residual resistivity → "quality film" •R-T peak explained by changes to DOS

PS on LCMO single crystal broad R-T peak on 15 nm film

Other Methods: Conducting AFM

film

- $C-AFM \rightarrow$ measure topography & spectroscopy independently
- contact AFM for topography
- •apply V_{bias} to conducting tip
- measure current

Problems

tip wear removes conductive coating

 commercially available conductive tips use laser to measure deflection \rightarrow remote alignment difficult

Solutions

modify commercial piezoelectric & piezoresistive tips

•piezoresistive \rightarrow contact AFM \rightarrow I-V •piezoelectric \rightarrow non-contact AFM $\rightarrow \langle I_t(z,A) \rangle \approx \frac{I_t(z,0)}{\sqrt{4\pi\kappa_t A}}$ dynamic \rightarrow changes in strain

make conductive AFM with guartz tuning fork (piezoelectric)

Piezoresistive (Tortonese et al.) Available from Veeco

Piezoelectric (Akiyama et al.) Available (?) from NanoWorld

Next Steps

selected spots)

STM

Immediate

•further investigate tip etching etched tungsten, Pt-Ir

reproduce results with varied Temp & AMF

•measure full I-V (every pixel, along line or

•miscut substrate (STO or NGO or ?) what will show step-edge induced strain

•Medium-Term

•improvements to STM \rightarrow vibration isolation, "residual" 50Hz

atomic resolution

AFM

Immediate

•investigate (modified) commercial AFM tips

•improvements to our AFM

•Medium-Term

•conductive AFM at RT with our existing AFM need current amplifier

Longer-Term

•low-temperature AFM