

Master thesis

Spin Seebeck effect

Bertrand Lacoste

Under supervision of Pr. Jan Aarts and daily supervision of Drs. M. Shahbaz Anwar

Spintronics

- Hard drive
- MRAM
- ... spin-Transistor

• Quantum computer

Spintronics + calorimetrics

- Hard drive
- MRAM
- ... spin-Transistor

• Quantum computer

Spintronics + calorimetrics

- Hard drive
- MRAM
- ... spin-Transistor

<u>Outline</u>

- Theory of spin-dependent thermoelectric transport
- Description of the results of Uchida et al. (Nature, 2008)
- Setup and experiment
- Results
- Possible explanations
- A new discovery ?

$$\begin{pmatrix} j_q \\ j_c \end{pmatrix} = \sigma \begin{pmatrix} \frac{\kappa}{\sigma} & ST \\ S & 1 \end{pmatrix} \begin{pmatrix} -\nabla T \\ \nabla \widetilde{\mu}_c/2e \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{0} \end{pmatrix} = \begin{pmatrix} S & 1 \end{pmatrix} \begin{pmatrix} -\nabla T \\ \nabla \widetilde{\mu}_c/2e \end{pmatrix}$$
$$j_c = 0 \longrightarrow S = -\frac{\Delta V}{\Delta T}$$

$$\begin{pmatrix} j_q \\ j_c \end{pmatrix} = \sigma \begin{pmatrix} \frac{\kappa}{\sigma} & ST \\ S & 1 \end{pmatrix} \begin{pmatrix} -\nabla T \\ \nabla \tilde{\mu}_c/2e \end{pmatrix}$$
 Mott's law : $\mathbf{S} = -eL_0 T \frac{D'(\epsilon_F)}{D(\epsilon_F)}$
$$j_c = 0 \longrightarrow S = -\frac{\Delta V}{\Delta T}$$

Seebeck effect : Thermoelectric equation

$$\begin{pmatrix} j_q \\ j_c \end{pmatrix} = \sigma \begin{pmatrix} \frac{\kappa}{\sigma} & ST \\ S & 1 \end{pmatrix} \begin{pmatrix} -\nabla T \\ \nabla \widetilde{\mu}_c/2e \end{pmatrix}$$
$$j_c = 0 \longrightarrow S = -\frac{\Delta V}{\Delta T}$$

Mott's law :
$$\mathbf{S} = -eL_0T\frac{D'(\epsilon_F)}{D(\epsilon_F)}$$

Two-fluid model : Stoner model :

1

Seebeck effect : Thermoelectric equation

$$\begin{pmatrix} j_q \\ j_c \end{pmatrix} = \sigma \begin{pmatrix} \frac{\kappa}{\sigma} & ST \\ S & 1 \end{pmatrix} \begin{pmatrix} -\nabla T \\ \nabla \widetilde{\mu}_c/2e \end{pmatrix}$$
$$j_c = 0 \longrightarrow S = -\frac{\Delta V}{\Delta T}$$

Mott's law :
$$\mathbf{S} = -eL_0 T \frac{D'(\epsilon_F)}{D(\epsilon_F)}$$

Two-fluid model : Stoner model :

$$\epsilon_{\uparrow}(k) = \epsilon_{0}(k) - I \frac{n_{\uparrow}}{n}$$

$$\epsilon_{\downarrow}(k) = \epsilon_{0}(k) - I \frac{n_{\downarrow}}{n}$$

1

Seebeck effect : Thermoelectric equation

$$\begin{pmatrix} j_q \\ j_c \end{pmatrix} = \sigma \begin{pmatrix} \frac{\kappa}{\sigma} & ST \\ S & 1 \end{pmatrix} \begin{pmatrix} -\nabla T \\ \nabla \tilde{\mu}_c/2e \end{pmatrix}$$
 Mott's law : $\mathbf{S} = -eL_0 T \frac{D'(\epsilon_F)}{D(\epsilon_F)}$

$$j_c = 0 \longrightarrow S = -\frac{\Delta V}{\Delta T}$$
Two-fluid model : $\begin{pmatrix} j_q \\ j_c \\ j_s \end{pmatrix} = \sigma \begin{pmatrix} \frac{\kappa}{\sigma} & ST & P'ST \\ S & 1 & P \\ P'S & P & 1 \end{pmatrix} \begin{pmatrix} -\nabla T \\ \nabla \tilde{\mu}_c/2e \\ \nabla \mu_s/2e \end{pmatrix}$

$$P = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} \qquad S = \frac{\sigma_{\uparrow} S_{\uparrow} + \sigma_{\downarrow} S_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} \qquad P' = \frac{\sigma_{\uparrow} S_{\uparrow} - \sigma_{\downarrow} S_{\downarrow}}{\sigma_{\uparrow} S_{\uparrow} + \sigma_{\downarrow} S_{\downarrow}} = \frac{\partial_{\epsilon} \sigma_{\uparrow} - \partial_{\epsilon} \sigma_{\downarrow}}{\partial_{\epsilon} \sigma_{\uparrow} + \partial_{\epsilon} \sigma_{\downarrow}}$$

Gravier et al., PRB 73, 024419, 2006

Seebeck effect : Thermoelectric equation

 $j_c = 0$

$$\begin{pmatrix} j_q \\ j_c \end{pmatrix} = \sigma \begin{pmatrix} \frac{\kappa}{\sigma} & ST \\ S & 1 \end{pmatrix} \begin{pmatrix} -\nabla T \\ \nabla \tilde{\mu}_c/2e \end{pmatrix} \qquad \text{Mott's law}: \qquad \mathbf{S} = -eL_0 T \frac{D'(\epsilon_F)}{D(\epsilon_F)}$$
$$j_c = 0 \longrightarrow S = -\frac{\Delta V}{\Delta T}$$
$$\text{Two-fluid model}: \qquad \begin{pmatrix} \mathbf{0} \\ j_s \end{pmatrix} = \begin{pmatrix} S & 1 & P \\ P'S & P & 1 \end{pmatrix} \begin{pmatrix} -\nabla T \\ \nabla \tilde{\mu}_c/2e \\ \nabla \mu_s/2e \end{pmatrix}$$

$$\begin{aligned} \begin{pmatrix} j_q \\ j_c \end{pmatrix} &= \sigma \begin{pmatrix} \frac{\kappa}{\sigma} & ST \\ S & 1 \end{pmatrix} \begin{pmatrix} -\nabla T \\ \nabla \tilde{\mu}_c/2e \end{pmatrix} & \text{Mott's law} : \quad \mathbf{S} = -eL_0 T \frac{D'(\epsilon_F)}{D(\epsilon_F)} \\ j_c &= 0 \longrightarrow S = -\frac{\Delta V}{\Delta T} \end{aligned}$$

$$\begin{aligned} \text{Two-fluid model} : \quad \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ j_s \end{pmatrix} &= \begin{pmatrix} S & 1 & P \\ P'S & P & 1 \end{pmatrix} \begin{pmatrix} -\nabla T \\ \nabla \tilde{\mu}_c/2e \\ \nabla \mu_s/2e \end{pmatrix} \\ j_c &= 0 \longrightarrow \begin{vmatrix} \nabla \mu_s/2e &= \frac{-1}{P} [-S\nabla T + \nabla \tilde{\mu}_c/2e] \\ j_s &= \sigma \left[(P' - \frac{1}{P})(-S\nabla T) + (P - \frac{1}{P})\nabla \tilde{\mu}_c/2e \right] \end{aligned}$$

Spin Seebeck effect

Uchida et al., Nature, Oct 2008 :

x_P (mm)

 $\mu_{\uparrow} - \mu_{\downarrow} = eS_{\rm S}(\nabla T)x$

Two principles in the experiment:

- spin-Seebeck effect: generation of a spin voltage in the magnet
- inverse spin-Hall effect (ISHE): transformation of a spin current into a charge current.

Inverse spin-Hall effect :

$$\mathbf{J}_{c} = D_{ISHE} \mathbf{J}_{s} \times \boldsymbol{\sigma}.$$

Effect due to spin-orbit coupling

Needs spin injection in Pt !

Inverse spin-Hall effect :

$$\mathbf{J}_{c} = D_{ISHE} \mathbf{J}_{s} \times \boldsymbol{\sigma}.$$

Effect due to spin-orbit coupling

Needs spin injection in Pt !

$$V \approx \theta_{\rm Pt} \eta_{\rm NiFe-Pt} (L_{\rm Pt}/d_{\rm Pt}) S_{\rm S} \Delta T/2$$

Kimura et al., PRL 98, 2007 :

 $\mathbf{J}_{c} = D_{\text{ISHE}} \mathbf{J}_{s} \times \boldsymbol{\sigma}.$

Uchida et al., Nature, Oct 2008 :

Experiment :

Comparison

Made in Japan

Made in Holland

10x10 Py film, 20nm thick on Al_2O_3

4x8 mm Py strip

5x0.1 mm Pt wires

2 mm spacing between wires

4x8 mm Py strip

5x0.1 mm Pt wires

2 mm spacing between wires

4x8 mm Py strip

5x0.1 mm Pt wires

2 mm spacing between wires

50

60

40

13 10 12 ΔT = 90 K 200 0.4x6 mm Py strip 1.0-150 100 m MMMM 1 1A A A A V₃₋₁₃ (µV) 0.5-H (Oe) 50 0.0 0 -50 -0.5 --100 1350 1300 1100 1050 1150 1200 1250 1400 1450 1500 time (s)

4x8 mm Py strip

5x0.1 mm Pt wires

2 mm spacing between wires

- narrow Py strip, three Pt wires on top.
- wide Py strip, three Pt wires on top.
- wide Py strip, five Pt wires under it.
- wide Py strip, five Pt wires on top.
- wide Py strip, single Pt wires under it.

Ð

300 K

Partial conclusion

- Unable to reproduce the previous experiment
- Questions about spin injection in Pt
- Questions about the theoretical model

Can we doubt Uchida's experiment?

Can we doubt Uchida's experiment?

Hatami et al., Solid State Communications, 2010

Anisotropic magnetothermopower

Half-metal : Chromium dioxide

P = 1

<u>Anisotropic magneto-</u> <u>thermopower</u>

Anisotropic magnetothermopower

Anisotropic magnetothermopower

Conclusion

- Unable to reproduce Uchida's experiment
- Difficult to prove who is right
- An interesting feature in CrO₂

Do you want more answers ?

Then ask questions

But not spin Hall voltage High temperature difference No Pt

10 nm thick Py film

20 nm thick Au film on MoGe

Planar Hall effect and AMR

Planar Hall effect and AMR

90°

– 150°

180°

- 225°

270°

315°

- 360°

12

10

Experiment

4x8 mm Py strip

5x0.1 mm Pt wires

2 mm spacing between wires

∆T (K)

-3 -

-4

-5 -

-6 | 0

