Tuning Fork FM-AFM

AFM-Fundamental Concepts

Atomic Force Microscopy (AFM)

- Tip-surface interaction (F_{t-s}) causes deflection of cantilever
- Measure deflection (z')
 - STM
 - Optically
 - Self sensing
 - Piezoelectric
 - Piezoresistive
- Deflection proportional to tipsurface force (beam equation)

$$z' = -\frac{l^3}{3EI}F_{t-s}$$

 Scan across surface while adjusting Z

AFM-Classification

- Static
 - Measure deflection
 - Shown earlier
- Dynamic
 - Deliberately oscillate cantilever
 - Measure changes to amplitude, frequency, and/or phase caused by tipsample interaction
 - Amplitude Modulation (AM)
 - Maintain <u>driving</u> frequency and <u>driving</u> amplitude
 - Measure cantilever amplitude changes
 - Frequency Modulation (FM)
 - Actively maintain <u>cantilever</u> amplitude
 - Measure cantilever frequency shift

Why FM-AFM?

- Static
 - 1/f noise
 - Scan rate versus force sensitivity
 - Small *k* for high sensitivity
 - Large *k* for higher scan rate (bandwidth)
- Dynamic
 - Shift away from dc
 - AM-AFM
 - Slow transient decay
 - FM-AFM
 - Rapid change in natural frequency

However, all offer atomic resolution

f [Hz]

$$k = 3\frac{EI}{l^3} \Longrightarrow z' = \left(\frac{1}{k}\right)F_{t-s}$$
$$f_0 = \frac{1}{2\pi}\sqrt{\frac{k}{m_{eff}}} \quad need \ f_0 >> (BW)$$

$$\tau_{_{AM}} \approx 2Q \,/\, f_{_0}$$

 $\tau_{\scriptscriptstyle FM}\approx 1/f_0$

Cantilever Model

- Consider cantilever as damped, harmonic oscillator with sinusoidal driving force
- Phase, δ, is difference between driving force and resultant cantilever oscillation

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = A_{drive} \cos(\omega t)$$
$$|A| = \frac{|A_{drive}|}{\sqrt{(1 - f_{drive}^2 / f_0^2) + f_{drive}^2 / (f_0^2 Q)}}$$
$$\delta = \tan^{-1} \left(\frac{f_{drive}}{Q f_0 (1 - f_{drive}^2 / f_0^2)}\right)$$

Tip-Surface Interaction

- Cause of tip-sample force, F_{ts},
 - Van der Waal
 - Chemical
 - Electrostatic
- Force between tip and sample causes a change in the natural frequency

Experimental Set-Up Mechanical Excitation

Experimental Set-Up Mechanical Excitation

Experimental Set-Up Tuning Fork & Electrical Excitation

EE eliminates:

- dither piezo
- deflection sensor

TF enhances:

• Q from $\sim 100 \rightarrow \sim 10,000$ (S/N increases)

Quartz vs. other piezo

- Low dissipation
- High-frequency stability

Experimental Set-Up Electrical Excitation

L=8.1e3H, R=27kΩ, C=2.9fF, C₀=1.2pF

Experimental Set-Up Tuning Fork & Mechanical Excitation

Experimental Set-Up Electrical Excitation-Variation

Tuning Fork Mechanical vs. Electrical

- Mechanical
 - simpler electronics
 - marginally improved S/N
- Electrical
 - no dither piezo
 - eliminate one gluing step

Mechanical Excitation Atomic Resolution

Giessibl FJ APPLIED PHYSICS LETTERS 76 (11): 1470-1472 MAR 13 2000

Mechanical Excitation Atomic Resolution

Heyde M, Sterrer M, Rust HP, et al. APPLIED PHYSICS LETTERS 87, 083104 2005

Electrical Excitation Atomic Resolution

An TS, Eguchi T, Akiyama K, et al. APPLIED PHYSICS LETTERS 87, 133114 2005

References

Giessibl, F.J. Rev. Mod. Phys., Vol. 75, No. 3, July 2003 Rychen, J., *et al.*, Rev. Sci. Instrum., Vol. 71, No. 4, April 2000 Loppacher, Ch., *et al.*, Appl. Phys. A 66, S215-218 (1998)

$$U_{c} = \hat{U}_{c} \sin(\omega_{c}t + \varphi_{c}); \quad U_{r} = \hat{U}_{r} \cos(\omega_{r}t + \varphi_{r})$$

$$U_{c}U_{r} = \frac{\hat{U}_{c}\hat{U}_{r}}{2} \left[\sin((\omega_{c} - \omega_{r})t + (\varphi_{c} - \varphi_{r})) + \sin((\omega_{c} + \omega_{r})t + (\varphi_{c} + \varphi_{r})) \right]$$
locked PLL $\Rightarrow \omega_{c} - \omega_{r} = 0$ & low - pass filter
$$U_{c}U_{r} \cong \frac{\hat{U}_{c}\hat{U}_{r}}{2} \sin(\varphi_{c} - \varphi_{r}) \cong K_{d}\Delta\varphi$$