Optimization of EBID nanowires *december 2006*

Marcel Hesselberth, Aurelien Botman, Hans Mulders

hessel@physics.leidenuniv.nl

Leiden Institute Of Physics

Overview

Topics:

- What is EBID
- Applications / possibilities
- State of the art
- Optimization and Project
- Experimental setup and techniques
- Experiments and (first) Results
- Conclusions

What is **EBID**

Direct Focussed Beam Process taxonomy:

- Similar processes for ion and electron beam
- Underlying mechanisms very different
- EBID: 1 nm patterns possible, process is a million times slower than EBL

What is **EBID**

- C Contamination in SEM (known since 2 stage RP)
- 3D additive lithography with precursors
- Koops et al pioneered use of metallo-organic
 precursors to deposit 'metals'

How EBID is believed to work

by some, that is

- Stainless steel 500 μ m diameter needle
- **•** pneumatic motion, 5 μ m repeatability
- claimed temp stability .1 C
- \checkmark positioned at (50,100) μ m
 - Ours: modified to allow in-needle mixing

Precursors

Metallo-organic

- Metallocenes (MCp_x, Cp = C₅H₅ ring ligand): NiCp₂, FeCp₂, (CH₃)₂PtCpCH₃
- Tetrakis (PF₃, triphenylphosphine) metals Pt(PF₃)₄,
 Au, ...
- Carbonyls Fe(CO)₅, W(CO)₆, Mo(CO)₆, Ni(CO)₄, Co(CO)₃
- Fluorides WF₆
- Chlorides MoCl₆
- Other [RhCl(PF₃)₂]₂, AuClPF₃ (no P inclusion, self decomposing, 20 μΩcm!),
- Insulators:
 - TEOS (tetraethylorthosilicate) + H₂O

Some applications

- Mask repair / semiconductor circuit editing (in conjunction with IBID)
- Nanosoldering (nanotubes etc.)
- Supertips for AFM and STM, 4 point probes etc.
- Nanowires (contacting, nanocircuits)
- 3D nano construction material
 - Example: tweezers

State of the art

Problematic!

- Serious issues with reproducability
- Nanocomposite metal clusters / precursor fragments
- Non-ohmic, gap can be fitted to IV
- VRH / Mott behaviour found in low temp experiments (are wires photosensitive?)
- But: some good results reported (pure, metallic), sometimes only below 20K ! ...
- (trivial) Rate equation established, parameters are the problem (mechanism, dissociation crosssections, reactions, sticking probabilities, diffusion coefficient)

Project (recipe for success :)

Improve purity / conductance of EBID nanowires by

- Robust optimization of beam current, beam voltage, temperature, dwell time, flux
- Attempt to ban irreproducabilities
- Explore gas mixing and annealing
- 3 precursors:
 - Std Pt (trimethyl-methylcyclopentadienyl-platinum)
 - Tetrakis Pt Pt(PF₃)₄
 - Tetrakis gold or AuCIPF₃
- Mix in: O_2 , H_2O
- Anneal (orders of magnitude improvement in ρ)

Setups

- Gas mixing setup
- Nanopattern samples with e-beam / etchers
- Configure probe station
- EBID / dimension measurements: NanoSEM
- EDX with ZAF / thin film corrections (FEI Acht, NatLab Eindhoven)
- Oven, annealing (NatLab)
- Low temp IV when something good produced (Chip carriers in cryostat would be nice)

unused ideas: quartz microbalance, tuning fork, in-situ measurements, ...

4 point sample

- 2x2 blocks of 4x4 samples per substrate
- Sputter MoGe / 100 nm Au in Z-400
- Write pattern in Ma-N 2405 resist
- Develop in 532/533 mixture, descum (PlasmaLab)
- Etch, IBE, Ar+, strip (PlasmaLab)

Results: Pt content vs beam

Bulk analysis, selfconsistent ZAF iteration applied to k-ratios

Results: gas mixing, ρ

Std Pt, deposition @ 5kV, UHR mode, beam nominal 900 pA, actual 570 pA, 2 min, 8500x800 nm, 1µs dwell, 0% overlap, , 0% rel diam

Lots of scatter. Only small variations in Pt conc!

Results: gas mixing, yield

Std Pt, deposition @ 5kV, UHR mode, beam nominal 900 pA, actual 570 pA, 2 min, 8500x800 nm, 1µs dwell, 0% overlap, , 0% rel diam

• $\sigma(Yield) < \sigma(\rho)$

Results: dwell time experiment

- Std Pt, deposition @ spot 5, (5,20) kV, 8500x800 nm, 0% overlap, , 0% rel diam
- Results span 4 orders of magnitude

Results: dwell time experiment

- Std Pt, deposition @ spot 5, (5,20) kV, 8500x800 nm, 0% overlap, , 0% rel diam
- Clear correlation with (unstable) pressure/flux!

Results: Try to stabilize pressure

New data: keep GIS open, GIS seems to have an issue with flow stability

Results: 5 kV low pressure data

- almost 4 orders of magnitude improvement by choosing beam kV, current, dwelltime, pressure
- reproducible process

Conclusions

- GIS flow unstable. Flow determined by volume at pressure p which is determined by T (Clausius Clapeyron: $ln(p) \sim 1/T$) and conductance
- It seems we are just entering the flux limited regime... Crossover flux-limited / current-limited must be determined
- Improve GIS. MFC?
- Chamber must be in defined state (ozone cleaner will be mounted)
- Several orders of magnitude improvement so far, 10 kΩ resistances can soon be expected without gas mixing or annealing
- We are now in a good position to investigate gas mixing and annealing