Spin Seebeck effect & Surface spin wave excitation

Jiang Xiao

Department of Physics, Fudan University, Shanghai, China

Gerrit E. W. Bauer Institute for Materials Research, Tohoku University, Sendai, Japan Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands

Spin Caloritrnoics III, Lorentz Center, Leiden, The Netherlands Tuesday - May 10, 2011

Experiment background - spin Seebeck

3-step explanation

J. Xiao et al. Phys. Rev. B 81, 214418 (2010) - H. Adachi et al, Phys. Rev. B 83, 094410 (2011) - C. M. Jaworski et al, Phys. Rev. Lett. 106, 186601 (2011)

Pumping by surface and bulk magnons

C. W. Sandweg et al. Appl. Phys. Lett. 97, 252504 (2010)

Experiment background - spin wave excitation

Y. Kajiwara et. al., Nature 464, 262-266 (2010)

Dipolar surface spin wave

Gurevich, A.G. & Melkov, G.A. Magnetization oscillations and waves. (CRC Press: 1996).

Dipole-exchange spin wave dispersion

Surface spin wave by surface anisotropy

Surface spin wave by surface anisotropy

Surface spin wave by surface anisotropy

Summary

- Spin Seebeck effect can be explained by the thermal spin pumping due to non-equilibrium magnonphonon temperature originated from temperature gradient.
- The excitation of exchange surface spin wave due to surface anisotropy requires a current that is about 20 times smaller than that of bulk modes, and multiple frequencies are excited simultaneously.