
Theory Panel 2: (2nd Principles, mixed bag)

•(Sinova) Topological thermoelectrics and a mixed bag of questions

•(Onoda) Thermoelectric and transport properties of gapped TI coupled to magnetic systems

(-20 minutes)

(2 hours)

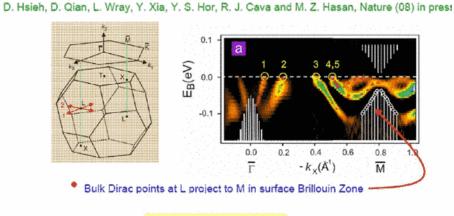
•(Xie) Spin superconductor in ferromagnetic graphene (-20 minutes)

•(Lee) Magnetization dynamics coupled with spin and spin waves

(-20 minutes)

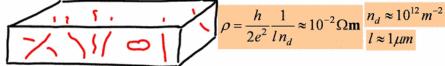
Key discussion during the workshop: what to call the field Heattronics? Thermomagnotronics? Nanospinheat ? Calefactronics? Fierytronics? Coolspintronics? Thermospintronics?

What I learned in kinder garden: Fire is cool

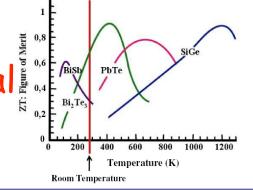


What I learned in Leiden: Spin+Fire is cooler

3D Topological Band Insulators


Experimental Candidate Bi_{0.9}Sb_{0.1}

$$v_0 = 1; \mathbf{M}_v = (1,1,1)$$


Experimental Signatures

 Resistivity: dislocation contribution could dominate over surface conduction.

 Scanning Tunneling Microscopy: Can determine atomic defect structure and Local Density of States (LDOS). 1D modes – finite DOS. Dirac point – vanishing density of states.

High ZT is related to topological protected states

University of Hamburg

BMBF Nanofutur Group

 $\mu \Phi$

MPI-MSP Halle

Prediction: ZT will be MUCH larger in HgTe wells in the inverted regime and in thin ribbon 3D TI through 1D channels

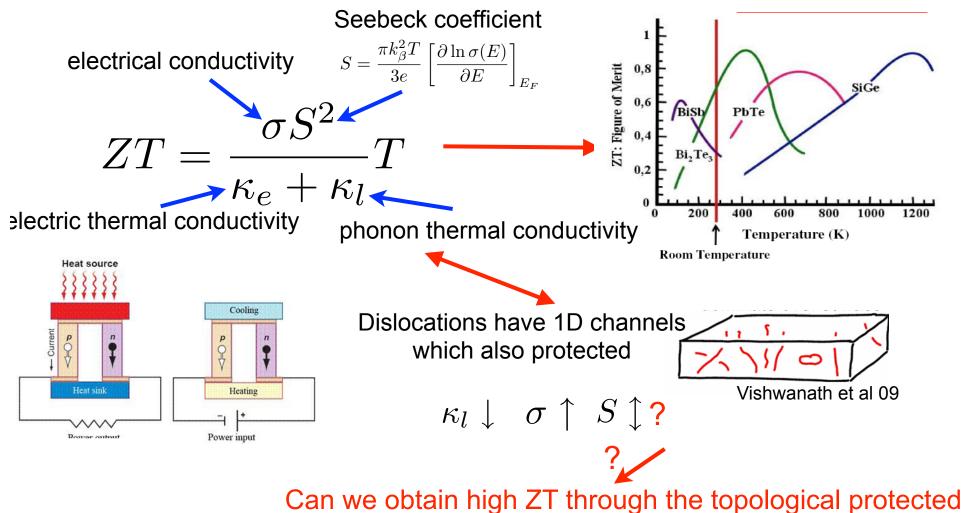
The Important Thermoelectric Materials

Topological thermoelectrics

JAIRO SINOVA Texas A&M University Institute of Physics ASCR

Open postdoc position (free stakes; summers in Prague; winters in Texas; cowboy hat; free rodeo classes)

Oleg Tretiakov, Artem Abanov, Suichi Murakami


Research fueled by:

From topological insulators to thermoelectrics

states; are they related to the high ZT of these materials?

Possible large ZT through dislocation engineering

APPLIED PHYSICS LETTERS 97, 073108 (2010)

Large thermoelectric figure of merit for three-dimensional topological Anderson insulators via line dislocation engineering

O. A. Tretiakov, Ar. Abanov, Shuichi Murakami, and Jairo Sinova¹ (Received 23 July 2010; accepted 30 July 2010; published online 18 August 2010)

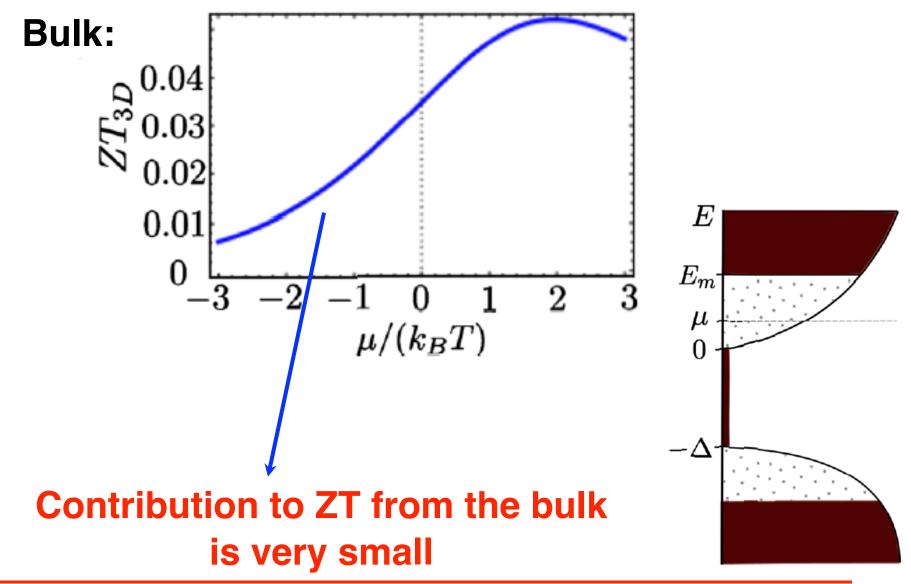
$$\frac{1}{ZT} = \frac{(L_0^b + snL_0^{1D})(L_2^b + snL_2^{1D} + \kappa_{ph}T)}{(L_1^b + snL_1^{1D})^2} - 1$$

 $Bi_{1-x}Sb_x$ (0.07 < x < 0.22)

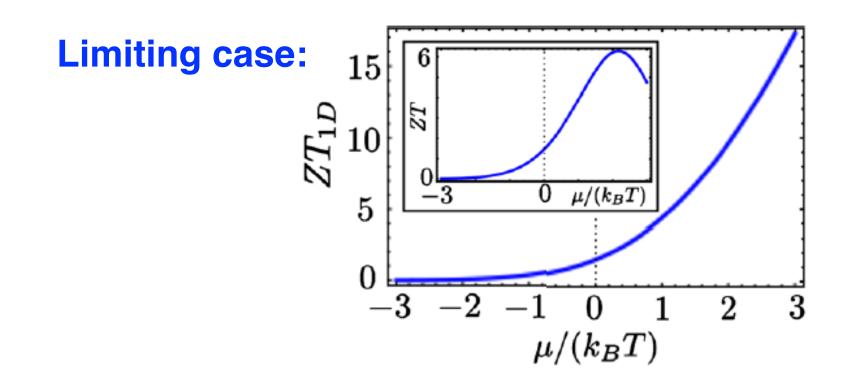
(a) E

where the L's are the linear Onsager dynamic coefficients

$$L^{1D}_{\alpha} = -\frac{l}{sh} \int \mathcal{T}(E) f'(E) (E - \mu)^{\alpha} dE$$

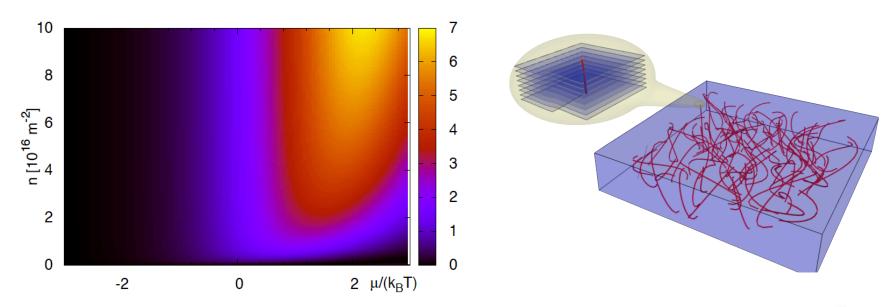

$$L^{b}_{\alpha} = -\tau \int_{E_{m}}^{\infty} D(E) f'(E) v^{2} (E - \mu)^{\alpha} dE$$

$$Localized bulk states$$


$$L^{b}_{\alpha} = \frac{2\sqrt{2m^{*}}}{\pi^{2}\hbar^{3}} \tau cT^{\alpha+3/2} \int_{\frac{E_{m}-\mu}{T}}^{\infty} dx \frac{x^{\alpha} (x + \mu/T)^{3/2} e^{x}}{(e^{x} + 1)^{2}}$$
The tick we have been of the part of

Tretiakov, Abanov, Murakami, Sinova APL 2010

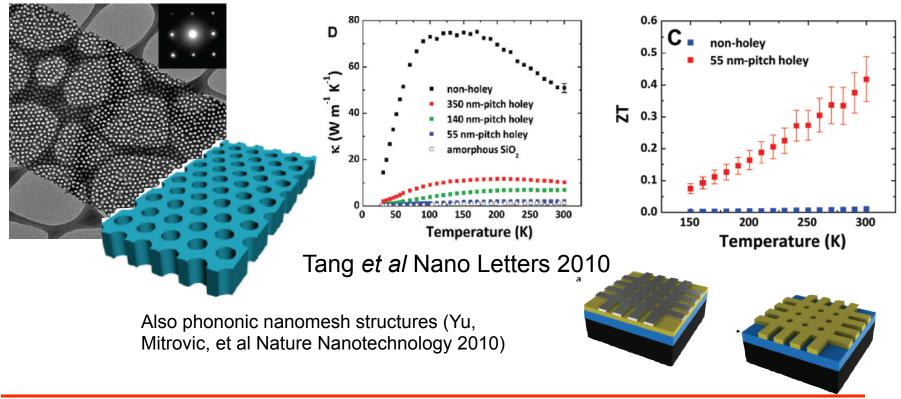
Bulk contribution


ZT of one perfectly conducting 1D wire

infinite density of dislocations

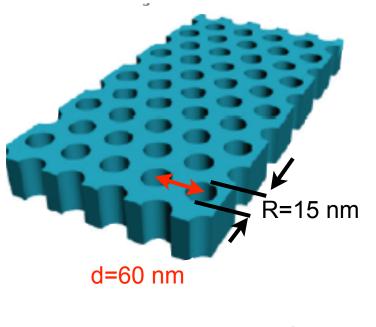
$$ZT_{1D} = \lim_{n \to \infty} ZT = \frac{(L_1^{1D})^2}{L_0^{1D} L_2^{1D} - (L_1^{1D})^2}$$

Possible large ZT through dislocation engineering



Remains <u>very</u> speculative but simple theory gives large ZT for reasonable parameters

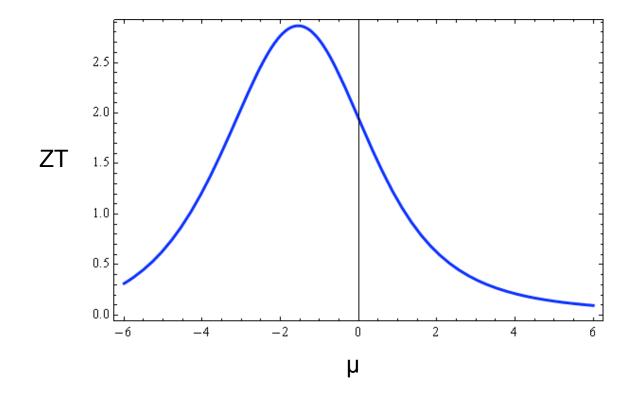
Tretiakov, Abanov, Murakami, Sinova APL 2010


So far only one material is believed to have protected 1D states on dislocations: how to further exploit TI properties to increase ZT? Analogy to HolEy Silicon

Extending the idea to the entire class of TI insulators

$$\frac{1}{ZT} = \frac{(L_0^b + NL_0^s)(L_2^b + NL_2^s + (\kappa_{ph} + N\kappa_{ph}^s)T)}{(L_1^b + NL_1^s)^2} - 1$$

$$L_{\alpha} = L_{\alpha}^{b} + NL_{\alpha}^{s}$$

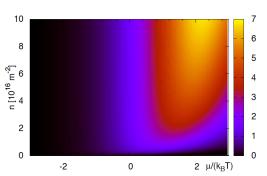


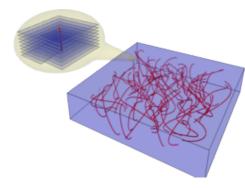
$$\kappa_{ph} \approx 0.01 \mathrm{Wm}^{-1} \mathrm{K}^{-1}$$

$$ZT_{2D} = \lim_{n \to \infty} ZT = \frac{(L_1^s)^2}{L_0^s (L_2^s + \kappa_{ph}^s T) - (L_1^s)^2}$$

Tretiakov, Abanov, Sinova (in preparation) 2011

Preliminary results (week ago)

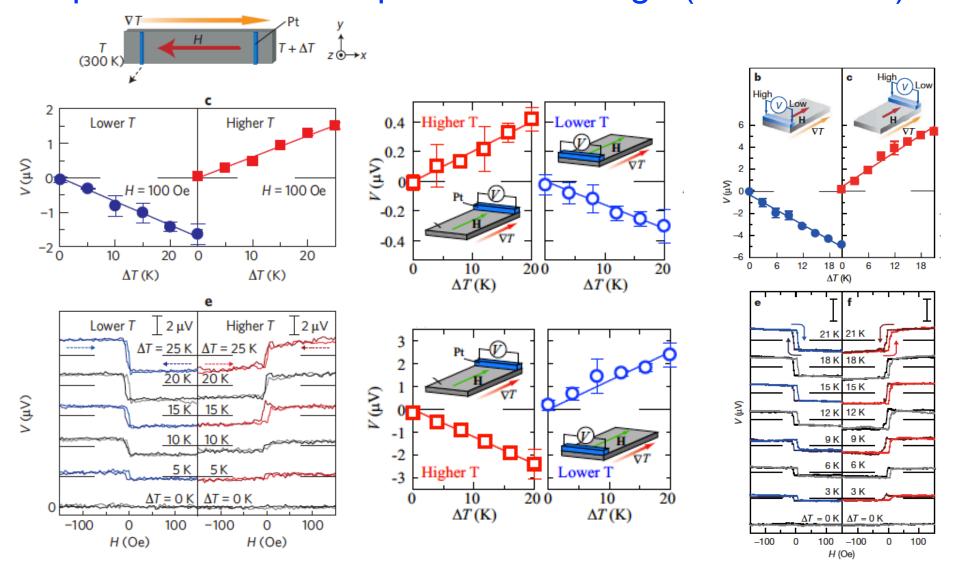

Summary of topological thermoelectrics


•Qualitative theory was developed on how to increase *ZT* in topological insulators via line dislocations.

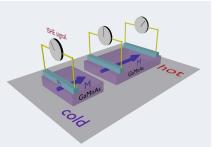
•The interplay of topologically protected transport through the dislocations and Anderson insulator in the bulk.

•Estimated $ZT \sim 10$ at room temperature.

•Idea can be extended to the entire range of TI



NOW SOME RANDOM THOUGHTS FROM THIS WEEK: DISCUSSION TIME


Which one is which?

Spin Seebeck? or Spinsomething? (Ron Jansen)

•More experiments in more materials (Spin Seebeck)

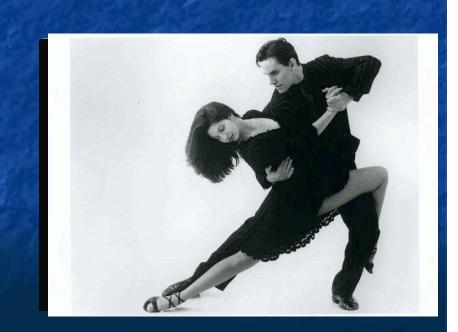
- •Several teams see the same effect.
- •Phonon's on the substrate playing a key role
- •Sign changes with different materials

- •Experiments are a bit too complicated (too many competing thing; sometime more does not lead to better understanding)
- Theory of Spin Seebeck (an evolution): some progress and some difficulties
 There seems to be agreement on the mechanism that injects the spincurrent (spin-pumping); is it the only one possibility?
 Different scenarios that create the non-equilibrium condition for finite spin pumping (magnon-phono drag, Sanders-Walton)
 SIGN PROBLEM: if correct the theory has problems
- Magnetic heat engines: a clear definition of ZT in magnetic systems
 AGAIN: is there a ZT (e.g. can one create a heat engine) from spin Seebeck?

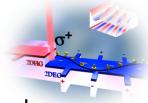
Checks (Japan Group)	Checks (OSU Group)
Spin Seebeck measured in different	•Bilayer system: WHY additive; why GaMnAs
materials: Ni (opposite sign) and Fe	overwhelms MnAs? Obviously exchange bias
BUT ISHE FMR measurement gives same	plays a role but how? Shouldn't the focus be
sign!!!	to simplify (YT)
Did not try non-ferromagnetic metals	•GaMnAs (Magnetic Semiconductor) measured as
No V(ISHE) signal seen when:	a function of T
• Permalloy without Pt bar contacts	•Measured paramagnetic sample with Pt contacts
• When whole sample is made of Pt	= 0 signal
• Permalloy with Cu leads	•Did measurements to try to exclude the Planar
• If ΔT = 0	Nernst contributions
 If ∆T = 0 In YIG, SiO₂ between the Pt (this check is 	 Measured transverse V w/ Pt point contacts, one observes Nernst contribution and ISHE (Nernst

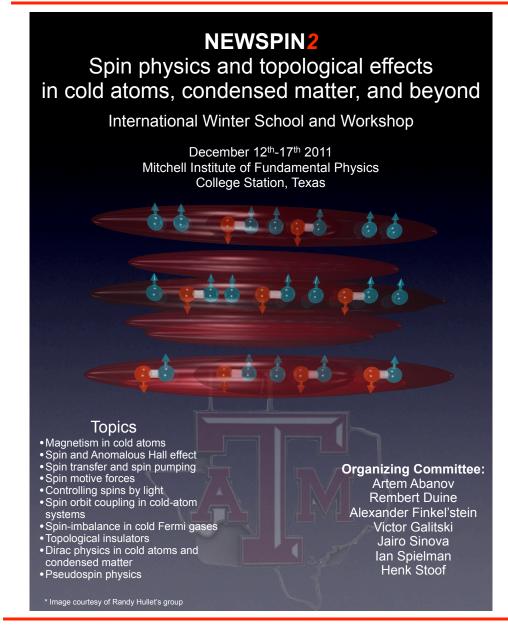
 Measured transverse V w/ Pt point contacts, one observes Nernst contribution and ISHE (Nernst overpowers?)

Wish lists of Checks (To do)


•Kerr Microscopy??

not done in FeNi)


- Measure regular Seebeck in cut samples (as a thermometer)
- Different widths of Pt and sample
- •Instead of cut, remove the sapphire and leave a slip (done)
- Metal with Pt strip (check missing from Japanese group) (done?)
- •Heat pulse experiments (heat solitons) form DC to AC
- •Separate contacts on edges of sample and Pt strip (measure a vertical voltage?)
- How does signal depend on geometry of Pt (ex. bigger depth leading to shorting)



BUT it takes MANY to do the spin caloritronics tango!!

Spin in Cold Atoms and CM systems

3 day Winter School and 3 day Workshop http://newspin2.physics.tamu.edu/

Nanoelectronics, spintronics, and materials control by spin-orbit coupling