

# **MAGNETIZATION DYNAMICS COUPLED WITH SPIN & SPIN WAVES**

# **Kyung-Jin Lee**

Dept. of Mater. Sci. & Eng., Korea Univ. (KU), Republic of Korea

## \* Several examples for self-consistent calculation of spin transport and magnetization dynamics

### Hyun-Woo Lee (POSTECH)

- → Tips about how to implement Heat Transport
- → Issue: Coarse graining to properly consider T and grad T in Micromagnetics
- \* Domain wall motion induced by propagating spin waves

Hiroshi Kohno (Osaka Univ.), Soo-Man Seo (KU)



# Magnetization Dynamics + Diffusive Spin Transport

Ex1. Current-induced excitation of single FM

In multilayered structure, the 2<sup>nd</sup> ferromagnet (= polarizer) is not essential for current-induced magnetic excitation when the magnetization is laterally inhomogeneous

- → Lateral spin diffusion
- → Theory: Polianski and Brouwer, PRL 92, 026602 (2004)
- → Experiment: Ozyilmaz et al. PRL 93, 176604 (2004)

# Not applicable to describe the magnetic excitation in a **single** ferromagnet



# Magnetization Dynamics + Diffusive Spin Transport Ex1. Current-induced excitation of single FM



# including leads:









## Magnetization Dynamics + Diffusive Spin Transport Ex1. Current-induced excitation of single FM







 $\widetilde{\alpha}(q)$ : Renormalized damping

 $S_1(q)$  : STT magnitude



n = electron density

D = diffusion const.

- $\tau_{sf}$  = spin relaxation time
- $\rm E_{s}$  = electric field due to SMF

**Magnetization Dynamics + Diffusive Spin Transport** Ex2. Charge and spin currents caused by spin motive force

- Spatiotemporal change of magnetization
- → Spin Motive Force (SMF) [1]  $E_{Si}^{\uparrow\downarrow} = \pm \frac{\hbar}{2e} (\partial_i \mathbf{m} \times \partial_i \mathbf{m}) \cdot \mathbf{m}$ <u>Theories</u>
- · Volovik, J. Phys. C. '87 / Barnes & Maekawa, PRL '07 / Saslow, PRB '07
- Ohe et al, PRL '07 / Tserkovnyak et al. PRB '07-'10 / Duine, PRB '08 / Zhang PRL '09

spin current  $\mathbf{j}_{i}^{s} = \frac{g\mu_{B}}{2e} (G^{\dagger}E_{i}^{\dagger} - G^{\dagger}E_{i}^{\dagger})\mathbf{m} = \frac{g\mu_{B}\hbar G_{0}}{4e^{2}} (\partial_{t}\mathbf{m} \times \partial_{i}\mathbf{m})$ 

 Spin current that causes spatial dependent enhancement of Gilbert damping (similar to spin pumping to normal metal in contact: Tserkovnyak et al. PRL '02)

$$\partial_t \mathbf{m} = -\gamma \mathbf{m} \times \mathbf{H}_{\text{eff}} + \mathbf{m} \times (\mathcal{D} \cdot \partial_t \mathbf{m})$$

$$\mathcal{D}_{\alpha\beta} = \alpha_0 \delta_{\alpha\beta} + \eta \sum_i (\mathbf{m} \times \partial_i \mathbf{m})_{\alpha} (\mathbf{m} \times \partial_i \mathbf{m})_{\beta} \qquad \eta = \frac{g\mu_B \hbar}{4e^2 M_s} G_0 \sim 0.5 nm^2 \text{ for } P_Y$$

- For DW width = 5 nm
- → additional damping =  $0.5 \text{ nm}^2/(5 \text{ nm})^2 = 0.02$



8

6

# Magnetization Dynamics + Diffusive Spin Transport

Ex2. Charge and spin currents caused by spin motive force

### [Model system]

• 1D domain wall (DW) oscillator  $\rightarrow$  fixed position (d $X_{DW}$ /dt = 0), but rotating

 $(d\phi/dt \neq 0)$  & DW width = 10 nm,  $\omega$  = 10 GHz,  $\lambda_{sf}$  = 0.5, 5, 50 nm

[Charge current, j<sub>c</sub>]

[Spin current, j<sub>s</sub>]



• When spin diffusion is turned on, jc almost vanishes and js significantly reduces.

• The reduction in j<sub>s</sub> depends on the spin diffusion length.



# Magnetization Dynamics + Ballistic Spin Transport Ex3. Nonlocal STT in a very narrow domain wall Wide DW Wide DW

- \* Narrow DW
  - The  $\beta$ -term must be non-zero and  $\propto exp(1/\lambda_{DW})$  where  $\lambda_{DW}$  is the DW width [Xiao et al. PRB **73**, 054428 (2006)]
  - [Tatara, ..., KJL, JPSJ 76, 054707 (2007)].
  - Narrow wall → good for the high density storage

9

# \* \*\*\*

# Magnetization Dynamics + Ballistic Spin Transport Ex3. Nonlocal STT in a very narrow domain wall

 $u_0 = spin current velocity$ 

#### 2.5 Λ (= $\lambda_{DW} k_B^2/k$ $k (= \lambda_{DW} k_B^2 / k_B$ 1000 0.5500 - 0.5500 0.2750 2.0 0 2750 - 0.1833 0.1833 $v_{DW}/u_0$ 0.1375 100 v<sub>DW</sub> (m/s) 1.5 10 1.0 ع الم B<sup>eff</sup>/ع 0.5 λ<sub>DW</sub> = 5.5nm 0.1 0.0 10<sup>12</sup> 10<sup>10</sup> 10<sup>11</sup> 10<sup>13</sup> 10<sup>10</sup> 10<sup>11</sup> 10<sup>12</sup> 10<sup>13</sup> $J_{a}(A/m^{2})$ $J_{a}(A/m^{2})$ $v_{DW} \propto (J_e)^1$ $v_{DW}/u_0 = constant$ $\beta_{nonlocal}$ acts like $\beta_{spin}$ relax. ->



# Magnetization Dynamics + Ballistic Spin Transport Ex3. Nonlocal STT in a very narrow domain wall

- \* We *self-consistently* solve the LLG and the semi-classical spin transport equation.
- Model system = Perpendicular materials
  - \* Ku =  $3.3x10^6$  erg/cm<sup>3</sup>, Ms = 650 emu/cm<sup>3</sup>, A =  $2.0x10^{-6}$  erg/cm,  $\alpha$  = 0.1,W = 100 nm & t = 10 nm,  $\beta_{spin relax}=0$
  - \* Variable:  $\Lambda \equiv \lambda_{DW} k_B^2 / k_F$   $E_F = \hbar^2 k_F^2 / 2m$  &  $E_{ex} = \hbar^2 k_B^2 / m$





10

# Numerical approach for spin caloritronics?

- Coupled dynamics of MAGNETIZATION + SPIN → Well established
- MAGNETIZATION + SPIN + HEAT (Temperature)
  - (Static) Spin-dependent thermoelectrics (van Wees group's talk)
  - Magnon-driven Spin-Seebeck (Ohe et al. PRB '11)
  - Thermal STT + M dynamics (self-consistent)
  - Phonon-driven Spin-Seebeck
  - ...
- An important issue
  - How to properly consider temperature and its gradient?
- 12







• Amplitude change + ?



# Understanding SW-induced DW motion (Prof. H. Kohno, kohno@mp.es.osaka-u.ac.jp)

- We introduced SW spin current and SW momentum current
  SW spin current (*J*<sub>c</sub>)
  - $\begin{array}{lll} \displaystyle \frac{\partial M}{\partial t} &=& \gamma H_{\rm eff} \times M + \frac{\alpha}{M_{\rm s}} M \times \frac{\partial M}{\partial t} \\ \\ \displaystyle \dot{M} + {\rm div} J_{\rm s} = T. & \longrightarrow & \boxed{J_{\rm s} \;=\; \gamma A M \times \nabla M} \\ & T \;=\; \gamma H' \times M + \frac{\alpha}{M_{\rm s}} M \times \dot{M} \end{array}$
- SW momentum current  $(J_m)$



18

# Understanding SW-induced DW motion (Prof. H. Kohno)

• SW spin current (*J*<sub>s</sub>)

$$\pm \frac{\dot{X}}{\lambda} + \Delta j_{\rm s} = \frac{K_{\perp}S}{2\hbar} \sin 2\phi_0 + \alpha \dot{\phi}_0, \qquad \Delta j_{\rm s} = \pm 2 \left(JS/\hbar\right) \left|u_x u_y\right| q.$$

•  $J_s \Rightarrow$  negative DW velocity / proportional to wavevector q, exchange A, and SW amplitude u.

• SW momentum current ( $J_{m}$ )  $\pm 2s_{0}\dot{\phi}_{0} + \Delta j_{m} = -\alpha s_{0}\frac{2\dot{X}}{\lambda}$ 

$$\Delta j_{\rm m} = \frac{S^2}{4Ka^3} \left\{ (Jq^2)^2 - K(K+K_{\perp}) \right\} \left\{ u^2 |_{x=\infty} - u^2 |_{x=-\infty} \right\},$$

 J<sub>m</sub> → DW velocity changes its sign depending on SW frequency / proportional to Amplitude change.

Analysis based on these two SW currents are in progress.

17



# Summary

- 1. Some examples for self-consistent of spin transport and magnetization dynamics
- 2. When including Heat, coarse graining should be done.
- 3. SW can move DW: DW velocity versus SW frequency would be understood based on SW spin and momentum currents.