

Heusler Compounds for Thermoelectric and Spincaloric Applications

Claudia Felser

www.superconductivity.de

Goal: Directed Design of new functional Materials

Concept

Heusler compounds

Graf T, Felser C, Parkin SSP, IEEE TRANSACTIONS ON MAGNETICS 47 (2011) 367

Graf T, Felser C, Parkin SSP, Progress in Solid State Chemistry (2011),

i:10.1016/j.progsolidstchem.20

1.6

1.4

1.2

1.0

0.6

0.4

0.2

0.0

k ^{0.8}

Thermoelectric and Spintronics

Observation of the spin Seebeck effect

K. Uchida¹, S. Takahashi^{2,3}, K. Harii¹, J. Ieda^{2,3}, W. Koshibae⁴, K. Ando¹, S. Maekawa^{2,3} & E. Saitoh^{1,5}

K. Uchida, et al. Nature 455 (2008) 788

Moment Counting electrons

From wide to low band gap semiconductor

Kandpal *et al.*, CF J. Phys. D **39** (2006) 776

Why Heuslers ...

Тур	Material	Price in \$/kg (metals)
V-VI	Bi ₂ Te ₃	140
IV-VI	PbTe	99
Zn₄Sb ₃	Zn_4Sb_3	4
Silicides	p-MnSi1.73	24
	$n-Mg_2Si_{0.4}Sn_{0.6}$	18
	Si _{0.80} Ge _{0.20}	660
	Si _{0.94} Ge _{0.06}	270
Skutterutides	CoSb ₃	11
Half-Heusler	TiNiSn	55
n/p-Clathrate	Ba ₈ Ga ₁₆ Ge ₃₀	1000
		without Ba
Oxides	p-NaCo ₂ O ₄ ,	17
		without Na, O
Zintl Phasen	p-Yb ₁₄ MnSb ₁₁	92
Th ₃ P₄	La _{3-x} Te ₄	160

Fraunhofer Institut Physikalische Messtechnik

Leiden Lorentz Center May 2011

Thermoelectric

Band engineering

Band structure calculations: TB-LMTO 47 or Wien2k Code (DFT, GGA), Transport with the Boltz trap code

moment p-type NiTiSn with Hf, Zr doped with Sc

Graf T, Felser C, Parkin SSP, IEEE TRANSACTIONS ON MAGNETICS 47 (2011) 367

Graf T, Felser C, Parkin SSP, Progress in Solid State Chemistry (2011),

Leiden Lorentz Center May 2011

700

800

900

moment Thermal conductivity: nano structuring

Bosch, Mainz, Patent submitted T. Graf,et al. Scripta Mater. 63 (2010) 1216

12

Tunable multifunctional topological insulators in ternary Heusler compounds

Stanislav Chadov¹, Xiaoliang Qi^{2,3}, Jürgen Kübler⁴, Gerhard H. Fecher¹, Claudia Felser¹* and Shou Cheng Zhang³*

Multifunctional properties

- RE: Gd Magnetism
- RE: La Superconductivity
- RE: Yb Kondo insulator ...

and related compounds

Chadov, Qi, Kübler, Zhang, Felser Nature Mat. 9 (2010) 541, arXiv:1003.0193 Zhang, Chadov, Müchler, Yan, Qi, Kübler, Zhang, Felser, Phys. Rev. Lett. (2011) 156402, arXiv:1010.2195

moment Zero gap: fingerprints, binaries→ternar

Chadov, Qi, Kübler, Zhang, Felser Nature Mat. 9 (2010) 541, arXiv:1003.0193 . Leiden Lorentz Center May 2011 Semiconductor 9/13

Good TI are good thermoelectrics

R. Asahi et al. J. Phys.: Cond. Mat. 20 (2008) 64227
K. Miyamoto et al. Appl. Phys. Express 1 (2008) 081901
VK Zaitsev et al. PRB 74 (2006) 045207

From diamond to graphite

From cubic to hexagonal

From non centro symmetric to centro symmetric

→ allows determination of the parity From sp³ to sp² (p) Breaking the symmetry $a = b \neq c$

3D topological insulator

From diamond to graphite

moment Honeycomb from sp³ to sp²

Band inversion is found in the heavier compounds No surface state? Why? Interaction between the two layers in the unit cell

Zhang, Chadov, Müchler, Yan, Qi, Kübler, Zhang, Felser, Phys. Rev. Lett. 106 (2011) 156402 arXiv:1010.2195v

Honeycomb from sp³ to sp²

Zhang, Chadov, Müchler, Yan, Qi, Kübler, Zhang, Felser, Phys. Rev. Lett. 106 (2011) 156402 arXiv:1010.2195v1 Leiden Lorentz Center May 2011

Band inversion between d and f bands of different parity

B. Yan, L Müchler, HJ Zhang, XL Qi,, SC Zhang, C. Felser, PRL under review, arXiv:1104.0641

moment Design scheme

Good thermoelectric materials are candidates for topological insulators

Tunable semiconductors

Semiconductor with tunable Gaps Low band gap Odd number of Dirac cones

Chemical solutions

Ternary compounds 18 valence electrons Direct gap at the Γ point 2dim. - even number of Dirac

Rare earth elements ...

Large spin orbit coupling

Heavy elements

2 D TI Cubic, we need quantum well structures

Sufficient condition:

Band inversion

small ΔEN

Parity change (structures with inversion symmetry) Eigenvalues

 $s - p \dots d - f$ different degeneration ----- t2g - eg doesn't work

Add new properties multifunctionality

Challenges

Still a need for new compounds with large gaps (300meV) for room temperature effects Control over charge carriers in low band gap semiconductors ... Leiden Lorentz Center May 2011

moment Magnetic Heusler compounds

$$\mathsf{CCFA} - \mathsf{Co}_{2}\mathsf{Cr}_{0.6}\mathsf{Fe}_{0.4}\mathsf{A}$$

- 1903: First "Heusler" compound Cu₂MnAl by Friedrich Heusler
- 1983: De Groot and Kübler: Prediction of half metallicity
- 1999: Discovery of high MR in CCFA by us (Patent IBM, CF)
- 2003: First TMR device with 19% room temperature effect by K. Inomata

High Seebeck coefficient in Co₂TiZ

moment

Barth et al. Proc. Phil. Trans A, accepted and Phys. Rev. B 81 (2010) 064404 arXiv:0907.3562v1

Magneto Seebeck Effect from I Mertig

Prediction of a device with switchable moment Seebeck

Prediction by Ingrid Mertig Magneto Seebeck effect

Half metallic ferromagnets •

DOS

Van Hove Singularity

Prediction of a device with switchable moment Seebeck

Susceptibility $\chi(T)$

0,06

0,05

0,0

Field H [MA m⁻¹]

0.1

(a)

(b)

(c)

350

Prediction by Ingrid Mertig Magneto Seebeck effect

- Half metallic ferromagnets
- Van Hove Singularity

Changing the sign of the Seebeck coefficient by switching the free laye

Spin gapless semiconductor Mn₂CoAl

Virtual Lab: Computational design of new materials

Properties can be described with DFT

More than 200 semiconducting Heusler compounds

- Thermoelectric devices with high ZT and nano structuring
- Multifunctional topological insulators

Spintronics

- Materials with high spin polarization at high Curie temperatu
 - TMR devices \rightarrow

Combination of both

- Spin Seebeck effect
- Magneto Seebeck effect
- Spin gapless semiconductors
- Tunable Multifunctional materials

 \rightarrow

new effects and devices

0.0

(a) E_{Γ_6} - E_{Γ_8} [eV] lattice constant [Å]

200 400 600 800 1000

Temperature T [K]

Summary moment