Anisotropic magneto-thermoelectric power of ferromagnetic thin films
M. S. Anwar*, B. Lacoste, and J. Aarts
${ }^{1}$ Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504,2300 RA Leiden, the Netherlands
*E-mail: anwar@physics.leidenuniv.nl, m.s.anwar476@gmail.com
Leiden Institute of Physics

Abstract

Magnetothermoelectric power (MTEP) in metallic ferromagnetic films of $\mathrm{Ni}_{80} \mathrm{Fe}_{20}$ (Permalloy; Py), Co and CrO_{2} was measured at temperatures in the range of 100 K to 400 K . In Py and Co both the anisotropic magnetoresistance (AMR) and MTEP show a relative change in resistance and thermopower of the order of 0.15%. $\mathrm{The}^{\mathrm{CrO}}$, films were grown on TiO_{2} and on sapphire. Where MTEP behavior at low fields shows peaks similar to the AMR, with variations up to 0.9%. With increasing field both the MR and the MTEP variations keeps growing, with MTEP showing relative changes of 1.5% with the thermal gradient along the b-axis and even 20% with the gradient along the c-axis, with an intermediate value of 3% for the film on sapphire. It appears that the low-field effects are due to the magnetic domain state, and the high-field effects are intrinsic to the electronic structure of CrO_{2}.

Thermal transport phenomenon

$J=e^{2} K_{o} \cdot E+\frac{e}{T} K_{1} \cdot(-\nabla T)$
Charge and heat flux transport under the influence of electric field E and temperature gradient $\nabla \mathrm{T}$. $w=e K_{1} \cdot E+\frac{1}{T} K_{2} \cdot(-\nabla T)$
$=\frac{\pi^{2}}{3} \frac{k^{2} T}{e^{2}}$
Electrical and thermal
Conductivities in meta Conductivities in metals

If $\mathrm{J}=0$, E induced because of $\nabla \mathrm{T}$ and resulted into Seebeck Effect, S=Seebeck coefficient

$$
E=\frac{1}{e T} K_{o}^{-1} K_{1} \cdot(-\nabla T)=S(-\nabla T)
$$

Semi classical, Mott's formula of Seebeck coefficient, ratio of derivative of density of states and the density of states at Fermi level
S in ferromagnetic material, electron magnon scattering, spin dependent S with opposite sign $S=-e L_{o} T\left\{\frac{N^{\prime} \uparrow\left(\varepsilon_{F}\right)}{N\left(\varepsilon_{F}\right)}-\frac{N^{\prime} \downarrow\left(\varepsilon_{F}\right)}{N\left(\varepsilon_{F}\right)}\right\}=(S \uparrow-S \downarrow), N=N \uparrow+N \downarrow$ Influence of magnetic domain structure on thermoelectric power TEP?

Experimentation

Thermopower was measured using a home built sample holder based on PPMS puck, as shown in fig. 1 MTEP was probed with parallel configuration of temperature gradient and externally of temperature gradi
applied magnetic field. applied magnetic field. Temperature dependent Seebeck coefficient was measured via dynamic technique in the temperature range of $100 \mathrm{~K}-400 \mathrm{~K}$
Py films were deposited in UHV magnetron sputtering system with background pressure $10^{-9} \mathrm{mbar}$, Co films were deposited in Z-400 background presure of $10^{-6} \mathrm{mbar}$.
CrO_{2} thin films were deposited on TiO_{2} and sapphire substrates utilizing the Chemical Vapor Deposition technique at atmospheric pressure

Figure 2. AMF images of CrO_{2} thin films deposited on (a) Sapphire (b) TiO_{2} substrates. Films grow in the form of rectangular grains.

Figure 1. Home build thermal transport sample holder, based on PPMS puck.

Figure 3, (a) S(T), (b) MTEP, and (c) AMR for Py, (d) MTEP of Co.

Figure 4, (a) $\mathrm{S}(\mathrm{T})$ for CrO_{2} films deposited on TiO_{2} and Sapphire substrates, (b) $\mathrm{R}(\mathrm{T})$ for CrO_{2} for both of these films, (c) MTEP for CrO_{2} deposited on Sapphire (d) and corresponding AMR.

MTEP measurements were done at
$\mathrm{T}=\mathbf{2 0 0} \mathrm{K}$
$\mathrm{T}_{\mathrm{ave}}=178 \mathrm{~K}$
$\Delta T=45 \mathrm{~K}$

AMR measurements
were done at
$\mathrm{T}=4.2 \mathrm{~K}$
$\mathrm{I}=100 \boldsymbol{\mu} \mathrm{~A}$
$\mathrm{H}_{\text {ext }}$ is parallel to current and the in-plane

Figure 6. MTEP with relative change of 20% along c -axis of CrO_{2} thin films deposited on TiO_{2} substrate.

Figure 5, (a) MTEP along c -axis of CrO_{2} thin films deposited on TiO_{2} substrate, (b) MTEP along b-axis. (c) and (d) are illustrating AMR signal along c -axis and b -axis respectively.

Both R and S are increasing in domain state but opposite for Py.

$$
06
$$

Figure 7. MTEP for a multilayer ferromagnet sample $\operatorname{Py}(25 \mathrm{~nm}) / \mathrm{CuNi}(50 \mathrm{~nm})$, No peak from CuNi at $\mathrm{T}_{\text {ave }}=185>\mathrm{Tc}$ of CuNi (a) and appearing at $\mathrm{T}<\mathrm{Tc}$ (b).

π

Conclusion

Magnetothermopower (MTEP) is strongly related with anisotropic magnetoresistance (AMR)
MTEP is increasing in the domain state.
Py and Co have opposite behaviour although their AMR have the same behaviour.
CrO 2 shows a huge TEP variation when measured along its c -axis.'
$\mathrm{S}(\mathrm{T})$ of CrO 2 thin films has anisotropic behavior.

References

1. J. M. Ziman, Principles of the theory of solids, Cambridge University Press-London, (1964).
2. L. Piraux, A. Fert, P. A. Schroeder, R. Loloee, and P. Etienne, J. Magnetism and Magnetic Materials, 110, L247 (1992).
3. Y. Pu, D. Chiba, F. Matsukura, H. Ohno, and J. Shi, Phys. Rev. Lett. 101, 117208 (2008).
4. M.S. Anwar, and J. Aarts, Supercond. Sci. Technol. 24, 024016 (2011).
