Thermal Transfer Torque

Jean-Philippe Ansermet Ecole Polytechnique Fédérale de Lausanne

Group

Post-docs

• S. Bréchet,

- M. Abid,
 - Simon Granville,
- M. Belesi, Grad students
- Haiming Yu,
- E. Papa,
- F. Comandè

theory nanostructures of many kinds transport measurements NMR of solids, multiferroics

thermal spin torque FMR and heat current OMAR and ESR of Organic LED

Funding

Swiss NSF, Swiss-India joint research, Swiss-China joint research SCOPES – Moldova- Romania

Charge – Heat – Spin transport in ferromagnetic nanostructures

Initial motivation :

Spin transfer torque effect

- Due to spin relaxation
- Dissipation to be found in transport

Magneto-Thermo-Galvanic Voltage (MTGV)

Proposal for a Priority Programme

Spin Caloric Transport (SpinCaT) Deutsche Forschungsgemeinschaft DFG

MTGV modelled with a «three-current» model

... suggests coupling of heat and spin current

... but we did not consider it !

Thermal spin torque predicted in 2007

M. Hatami, G.E.W. Bauer, Q. Zhang, P.J. Kelly, Phys. Rev. Lett. 99, 066603 (2007)

$\tau \sim P\Delta V + P'S\Delta T$

Joule heating of a spin valve in a nanowire

Nanowires **ideal** for large j_Q

Heat current (not temperature) changes the switching field

Haiming Yu, et al., Phys. Rev. Lett. 104, 146601 (2010)

Checking temperature rise

change of switching field NOT due to ΔT

Other check experiment : symmetric spin-valve

Without heat current

Haiming Yu, Phys. Rev. Lett. 104, 146601 (2010)

Analyzing the data

We have 2 independent sets of data

Switching field vs heat current

Generalized three-current model

Onsager phenomenological relations + Pauli matrices

$$\begin{pmatrix} j_q \\ j_e \\ j_m \end{pmatrix} = 2 \begin{pmatrix} -l_0 & Tk_0 & T\frac{k}{e}M \\ -k_0 & c_0 & \frac{c}{e}M \\ -kM & cM & \frac{c_0}{e} \end{pmatrix} \begin{pmatrix} \nabla T \\ \nabla V \\ \frac{dm}{dx} \end{pmatrix}$$

Bulk spin current :

$$\boldsymbol{j_{m}}=2c\left(\boldsymbol{\nabla}\boldsymbol{V}-\boldsymbol{S_{e\!f\!f}}\boldsymbol{\nabla}\boldsymbol{T}\right)$$

J. Dubois and J.-Ph. Ansermet, Phys. Rev. B 78, 184430 (2008).

Simulation of Switching field

$$\boldsymbol{j_{m}}=2c\left(\boldsymbol{\nabla}\boldsymbol{V}-\boldsymbol{S_{e\!f\!f}}\boldsymbol{\nabla}\boldsymbol{T}\right)$$

$$\frac{\Delta H_{sw}^{TST}}{\Delta H_{sw}^{STT}} = \frac{\tau_{TST}}{\tau_{STT}} = \frac{\dot{j}_{m,TST}}{\dot{j}_{m,STT}} = \frac{S_{eff} \nabla T}{\nabla V}$$

$$\begin{aligned} & \mathsf{V2f peak height} \\ (\mathsf{just a 2}^{\mathsf{nd}} \operatorname{order development, sorry}) \\ & V = R(\tau, T) I \qquad \Delta V = I \Biggl[\Biggl(\frac{\partial R}{\partial \tau} \frac{\partial \tau}{\partial j_m} j_m \Biggr) + \frac{\partial R}{\partial T} \Delta T^{2f} \Biggr] \\ & j_m = 2c \Bigl(\nabla V - S_{e\!f\!f} \nabla T \Bigr) \qquad \nabla T = A_1 I^2 \\ & I = I_{AC} + I_{DC} \\ & \Delta V = \Bigl(I_{AC} + I_{DC} \Bigr) \Biggl[- \frac{\partial R}{\partial \tau} \frac{\partial \tau}{\partial j_m} 2c \Biggl(\rho \frac{(I_{AC} + I_{DC})}{\pi r^2} + S_{e\!f\!f} A_1 \Bigl(I_{AC} + I_{DC} \Bigr)^2 \Biggr) + \frac{\partial R}{\partial T} \Delta T^{2f} \Biggr] \\ & V_{peak}^{2f} = \Biggl(- \frac{\partial R}{\partial \tau} \frac{\partial \tau}{\partial j_m} 2c \Biggl(\rho \frac{I_{AC}}{\pi r^2} + 3S_{e\!f\!f} A_1 I_{DC} I_{AC}^2 \Biggr) \Biggr) + \frac{\partial R}{\partial T} \Delta T^{2f} I_{DC} \end{aligned}$$

Simulation of V2f peak height

Recent work

Magnetization Dynamics in the presence of a heat current

Elisa Papa, poster at this conference

FMR under heat current : permalloy

Elisa Papa, poster at this conference

$$\begin{pmatrix} \mathbf{J}_{\uparrow} \\ \mathbf{J}_{\downarrow} \\ \mathbf{Q} \end{pmatrix} = - \begin{pmatrix} \sigma_{\uparrow} & 0 & \sigma_{\uparrow} S_{\uparrow} \\ 0 & \sigma_{\downarrow} & \sigma_{\downarrow} S_{\downarrow} \\ \sigma_{\uparrow} \Pi_{\uparrow} & \sigma_{\downarrow} \Pi_{\downarrow} & k \end{pmatrix} \cdot \begin{pmatrix} \nabla \mu_{\uparrow} / e \\ \nabla \mu_{\downarrow} / e \\ \nabla T \end{pmatrix} \mathbf{v}_{T}$$

Gravier et al. Phys. Rev. B 2006

Sachter et al. Nat. Phys. 2010

1. The three-current model 2. At large scales, $\mu_{\uparrow} = \mu_{\downarrow}$ 3. Spin-dependent transport, $\sigma_{\pm} = \sigma_0(1 \pm \beta)$ $\varepsilon_{\pm} = \varepsilon_0(1 \pm \eta)$ bulk spin current $j_p = -\sigma(\eta - \beta)\varepsilon\nabla T$

Summary

Heat-driven spin currents

- magnetization switching in nanostructures
- spurious temperature rise avoided in nanowires
- Modelling with a generalized 3-current model

Ferromagnetic resonance

• Effect of heat current on the amplitude of FMR (narrowing or Overhauser ?)