Spin Seebeck effect (theory) OUTLINE

- 14:00-14:25: Hiroto Adachi
 - (10[intro]+5 min. talk + 10 min. discussion)
- 14:25-14:45: Tamara Nunner
 - (10 min. talk + 10 min. discussion)
- 14:45-15:05: Saburo Takahashi
 - (10 min. talk + 10 min. discussion)
- 15:05-15:25: Jiang Xiao

(10 min. talk + 10 min. discussion)

15:25-15:30: The last 5 minutes for discussion.

Are only phonons relevant to the longrange nature of the spin Seebeck effect?

H. Adachi

Advanced Science Research Center, Japan Atomic Energy Agency

In collaboration with

J. Ohe, S. Takahashi, and S. Maekawa

Advanced Science Research Center, Japan Atomic Energy Agency

Special thanks to

K. Uchida, and E. Saitoh

Institute for Materials Research, Tohoku University

Mar. 11, 2011. in our office ...

Spin Seebeck effect (SSE): Universal aspect of ferromagnets

Metal (*Ni, Fe, Ni-Fe alloy*; Uchida et al. 2008) *Semiconductor* (*GaMnAs*; Jaworski et al. 2010) *Insulator* (*Yttrium Iron Garnet, Ferrite*; Uchida et al. 2010)

Review of the original SSE experiment -- Uchida et al., Nature (2008) --

$$V_{ISHE} = \Theta_H(|e|J_s^{in})(\rho/w) \quad (J_c = \Theta_H\sigma \times J_s)$$

Key Points: 1) $V_{ISHE} \propto J_s^{in}$ (spin current injected into Pt) 2) V_{ISHE} is observed over several millimeters (>> λ_{sf})

Conduction electrons in Py relevant to SSE? → seemingly NO!

From experiment ... Spin Seebeck Insulator (Uchida et al., 2010).

From theory Conduction electrons' short λ_{sf} fails to explain (Uchida, Hatami) the length scale seen in the experiment.

(a) Conventional spin-diffusion equation

See however the counter argument by Nunner.

Localized-spin based scenario for SSE (Spin injection from magnetic insulators: Takahashi)

At local thermal equilibrium, *pumping flow* (noise in F) and *back flow* (noise in N) cancel. *When F deviates from local thermal equilibrium*

→ Finite spin injection!

Essence of localized-spin based scenario

Localized spin in the *Ferromagnet* is excited by *heat current Q* flowing through the *Ferromag*.

Excited by heat current Q flowing through ferromag.

Note: $Q=Q_{mag}+Q_{ph}$ Accordingly, there are TWO relevant processes!

(i) Magnon driven SSE (Xiao, PRB 2010)

Localized spin is excited by magnon heat current Q_{mag}.

PHYSICAL REVIEW B 81, 214418 (2010)

Theory of magnon-driven spin Seebeck effect

Jiang Xiao (萧江),^{1,2} Gerrit E. W. Bauer,² Ken-chi Uchida,^{3,4} Eiji Saitoh,^{3,4,5} and Sadamichi Maekawa^{3,6}

In principle, the theory holds for both ferromagnetic insulators and metals. However, as shown above, the theory fails for ferromagnetic metal Py, which underestimates the length scale λ and overestimates the magnitude ξ . This might have two reasons: (i) the lack of reliable information about relaxation times $\tau_{mp,m}$ for Py and (ii) the complication due to the existence of conduction electrons in ferromagnetic metals.

	YIG	Ру	Unit
λ (th)	0.85-8.5	0.3	mm
λ (expt.)		4.0^{j}	mm

TABLE I Decemeters for VIC and Du

Concerning the length scale, this explains YIG, but fails to explain Py??

Other possibility of the localizedspin based scenario for SSE?

→YES! (phonon-drag SSE)

(ii) Phonon-drag SSE (Adachi, APL 2010)

Localized spin in ferromagnet is excited by *phonon* heat current

At low T (< 100K), phonon lifetime (tau_{ph}) gets longer due to the rapid suppression of the umklapp scatt.

→ Phonon-drag gives low-T enhancement of SSE!

Direct evidence of the phonon-drag SSE -- Uchida and Saitoh, unpublished (2011) --

A sample consisting of a Ni₈₁Fe₁₉/Pt bilayer wire placed on top of a single-crystal sapphire substrate, where only *phonons* can pass through the substrate.

Length scale of the phonon-drag SSE

Phonon can explain the long-range nature of the SSE in ferromagnetic METALS.

SUMMARY

• **Phonon drag** can explain the long-range nature of the SSE.

QUESTION

 Can conduction electron/magnon explain the SSE in ferromagnetic metals?