One year in Leiden

September 2004 - August 2005

Group Meeting, 31/08/2005

Proximity effect between a Superconductor ($\mathrm{S}=\mathrm{Nb}$) and a Weak Ferromagnet $\left(\mathrm{F}=\mathrm{Pd}_{0.81} \mathrm{Ni}_{0.19}\right)$

- $\mathrm{T}_{\mathrm{c}}\left(\mathrm{d}_{\mathrm{S}}, \mathrm{d}_{\mathrm{F}}\right)$ dependence in $\mathrm{Nb} / \mathrm{PdNi}$ bilayers
- $\mathrm{J}_{\mathrm{dp}}\left(\mathrm{d}_{\mathrm{F}}\right)$ behaviour in $\mathrm{Nb} / \mathrm{PdNi}$ bilayers
- Magnetization switching in $\mathrm{PdNi} / \mathrm{Nb} / \mathrm{PdNi}$ trilayers?

$\mathrm{T}_{\mathrm{c}}\left(\mathrm{d}_{\mathrm{F}}, \mathrm{d}_{\mathrm{S}}\right)$ dependence in $\mathrm{Nb} / \mathrm{PdNi}$ bilayers (I)

Motivation: In S/F structures two competing orders coexist, resulting in a rich variety of phenomena, such as the nonmonotonic behaviour of the critical temperature as a function of the thickness of the ferromagnetic layer.

The theory: based on the linearized Usadel equations, with the boundary conditions derived by Kupriyanov and Lukichev expressed in terms of two parameters

$$
\begin{gathered}
\gamma=\frac{\rho_{S} \xi_{S}}{\rho_{F} \xi_{F}^{*}}, \quad \gamma_{b}=\frac{R_{B} S}{\rho_{F} \xi_{F}^{*}} \\
\left(\xi_{S}=\sqrt{\frac{\hbar D_{S}}{2 \pi k_{B} T_{c S}}}, \quad \xi_{F}^{*}=\sqrt{\frac{\hbar D_{F}}{2 \pi k_{B} T_{c S}}}\right)
\end{gathered}
$$

γ measures the strength of the proximity effect between S and F γ_{b} describes the effect of the interface transparency

$$
\gamma_{b}=0 \text { Perfectly transparent interface }
$$

$\gamma_{b}=\infty$ Vanishingly small boundary transparency

FIG. 3. Characteristic types of $T_{c}\left(d_{f}\right)$ behavior. The thickness of the F layer is measured in units of the wavelength $\lambda_{\text {ex }}$ defined in Eq. (40). The curves correspond to different values of γ_{b}. The exchange energy is $E_{\mathrm{ex}}=150 \mathrm{~K}$; the other parameters are the same as in Fig. 2. One can distinguish three characteristic types of $T_{c}\left(d_{f}\right)$ behavior: (1) a nonmonotonic decay to a finite T_{c} with a minimum at particular $d_{f}\left(\gamma_{b}=2 ; 0.5 ; 0.1 ; 0.07\right)$, (2) a reentrant behavior ($\gamma_{b}=0.05 ; 0.02$), and (3) a monotonic decay to $T_{c}=0$ at finite $d_{f}\left(\gamma_{b}=0\right)$. The bold points indicate the choice of parameter corresponding to Fig. 6.

Two possible approximations:
-Multi-mode: all the Matsubara frequencies, $\omega_{n}=\pi \mathrm{T}_{\mathrm{c}}(2 n+1)$ are taken into account -Single-mode: only the first frequency, $\omega_{0}=\pi \mathrm{T}_{\mathrm{c}}$, is considered

$\mathrm{T}_{\mathrm{c}}\left(\mathrm{d}_{\mathrm{F}}, \mathrm{d}_{\mathrm{S}}\right)$ dependence in $\mathrm{Nb} / \mathrm{PdNi}$ bilayers (II)

The behaviour of the experimental $\mathrm{T}_{\mathrm{c}}\left(\mathrm{d}_{\mathrm{PdNi}}\right)$ data is reproduced by the theory using the values of the microscopical parameters:

$$
\begin{aligned}
& \rho_{\mathrm{S}}=17 \mu \Omega \mathrm{~cm}, \xi_{\mathrm{S}}=5.8 \mathrm{~nm}, \mathrm{~T}_{\mathrm{cS}}=7.41 \mathrm{~K} \\
& \rho_{\mathrm{F}}=64 \mu \Omega \mathrm{~cm}, l_{\mathrm{F}}=3.5 \mathrm{~nm}, \xi_{\mathrm{F}}^{*}=6.2 \mathrm{~nm}
\end{aligned}
$$

- Not big difference between single and multi-mode
-Small d_{F} regime: microscopical parameters of the F layer strongly depend on the thickness

The theory reproduces the experimental $\mathrm{T}_{\mathrm{c}}\left(\mathrm{d}_{\mathrm{PdNi}}\right)$ and $\mathrm{T}_{\mathrm{c}}\left(\mathrm{d}_{\mathrm{Nb}}\right)$ data with the same fitting parameters

$$
\begin{gathered}
\mathrm{E}_{\mathrm{ex}}=230 \mathrm{~K}=19.8 \mathrm{meV} \Rightarrow \xi_{\mathrm{F}}=2.6 \mathrm{~nm} \\
\gamma_{\mathrm{b}} \approx 0.13
\end{gathered}
$$

$\mathrm{J}_{\mathrm{dp}}\left(\mathrm{d}_{\mathrm{F}}\right)$ behaviour in bilayers (I)

Definition: Supposing to prevent vortex motion in a superconducting sample, than the depairing current is the ultimate critical current that a superconductor can support. It is reached when further acceleration of the Cooper pairs leads to such a decrease of their number than the superconducting state collapses.

Motivation: a more sensitive tool to study the order parameter changes
$\mathrm{Fe} / \mathrm{Pb} / \mathrm{Fe}$ trilayers

FIG. 5. $J_{c 0}^{G L}(0) \rho^{1 / 2}$ of the $\mathrm{Fe} / \mathrm{Nb} / \mathrm{Fe}$ trilayers scaled on the value of the single Nb layer vs superconducting layer thickness d_{Nb}. The result of the model calculations for $\gamma=34.6, \gamma_{b}=42$ is also plotted (solid line) as well as the dependence of the critical temperature $T_{c} / T_{c 0}$ on d_{Nb} (dashed line) for the same parameters.

Figure 4.13: Depairing current density $J_{d p}^{\text {nor }}$ (open squares) at $t=0.5$ and critical temperature T_{c} (open circles) of $\mathrm{Nb} / \mathrm{PdNi}$ bilayers as a function of ferromagnet thickness d_{F}. Black solid squares indicate the samples with the deviating values of $J_{d p}$. Dashed lines are guides to the eye.

Geers et al., PRB 64, 094506 (2001)

$\mathrm{J}_{\mathrm{dp}}\left(\mathrm{d}_{\mathrm{F}}\right)$ behaviour in bilayers (II)

$\cdot 1.5 \mu \mathrm{~m}$ wide strip (e-beam lithography + Ar-ion etching)
-Pulsed current technique (3-5 ms pulses)

Clear jump from the superconducting to the normal state

Thickness dependence of J_{dp}

Magnetization switching in $\mathrm{PdNi} / \mathrm{Nb} / \mathrm{PdNi}$ trilayers? (I)

Requirements:

Motivation:

-The superconducting state in a $\mathrm{F} / \mathrm{S} / \mathrm{F}$ trilayer depends on the relative magnetic orientations of the F layers: the critical temperature is reduced when the ferromagnets are magnetized in the same direction.

- The superconducting spin switch is a system in which is possible to control the occurence of superconductivity by changing the relative orientations of the F layers.

Magnetic properties

PdNi single films

reversed behaviour in the AMR shape

Use H_{c} thickness dependence to realize the switching? But...

