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Abstract 

The effects described in this review arise as a consequence of two terms calculated 
by Josephson in the expression for the electrical current flowing between a pair of 
weakly coupled superconductors. One of these terms is present at zero voltage and 
represents a supercurrent which can cross such barriers as thin layers of insulator or 
normal metal; the other is an extra component of resistive current. Both terms are 
periodic in $, the phase difference across the barrier of Y, the complex order para- 
meter. It is the periodic dependence of the current on $ which leads to the Josephson 
effects themselves, a unique group of phenomena which arise through the quantum- 
mechanical dependence of $ on the voltages across the barrier and on the magnetic 
fields near to it. 

This review sets out sufficient theoretical background to allow readers with no 
previous knowledge of superconductivity to understand the basic physics of the effects. 
It also caters for those wishing to learn enough to understand devices based on 
Josephson effects, and no more. Although the potentially most useful applications are 
described, the article concentrates on fundamentals, and early and recent experimental 
and theoretical developments in the understanding of Josephson weak links of all types 
are emphasized. 

This review was completed in April 1976. 

Rep. Prog. Phys. 1976 39 751-821 
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1. Introduction 

In the fourteen years since B D Josephson made his predictions of the effects 
which now carry his name, an enormous body of work (including a book, several 
important specialist reviews and many hundreds of papers) has been published 
developing and expounding them. In preparing this account of the Josephson effects 
I have therefore tried particularly to mite for the general audience of non-specialist 
physicists for whom this journal is published. I have, for instance, (at the risk of some 
bias) deliberately restricted my list of references to key papers and general articles so as to 
avoid overwhelming the newcomer to the subject with an impossible mass of further 
reading. I have also concentrated on giving an account of the essential physics, and 
only treated rather briefly in the final two sections a few of the most important or 
potentially important applications, leaving the interested reader with references to 
some of the more technical reviews which are available. Within this framework the 
subject falls naturally into two parts, which may interest different groups of people and 
which I have tried to keep reasonably well separated. The reader who wants to know 
simply what the Josephson effects are and what uses can be made of them will probably 
wish to read quickly 92 and then come to grips with 595,6 and 7, which between them 
cover most of the essential ideas which are involved in the practical applications of 
Josephson effects. The reader interested in the fundamental theory of the effect, in 
how it is modified in devices other than tunnel junctions or at high frequencies, and in 
how fully it has been confirmed and developed may prefer to concentrate on 953 and 4 
which describe the original theory itself and $$8 and 9 which describe later develop- 
ments. A feature of the subject is the extreme economy of Josephson’s own papers. 
To  the expert they are most illuminating, but to the newcomer the essential physical 
arguments which make them fascinating and original are so gently referred to that they 
are easily missed altogether. For this reason I have been at pains to expound the essence 
of Josephson’s original theory. This is why I have included $3 which emphasizes the 
significant features of the BCS description on which he built; I hope that this section 
will explain enough of BCS theory to allow readers to whom it is unfamiliar to follow 
the development without further reading. 

Brian Josephson was a research student at the Royal Society Mond Laboratory, 
Cambridge, at the time when he made his discoveries, working on an experimental 
project quite unconnected with tunnelling, I t  is a great pleasure to me as one of his 
contemporaries there to present to a wider audience the spare-time activity for which 
he was awarded a Nobel Prize. 

2. The Josephson supercurrent as a simple quantum-fluid property 
2.1. What are the Josephson efsects? 

When a superconductor passes below its transition temperature T,, a second-order 
phase transition occurs and a new type of ordering appears. The metal behaves as 
though it contained two fluids, a normal fluid of electron-like excitations, and a super- 
fluid or quantum fluid which has many strange properties. The quantum fluid is in 
some respects like a Bose condensate of electron pairs. It carries no entropy. Electrons 
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can enter the condensate, in pairs, and always at the same energy which, if the conden- 
sate is considered to be in equilibrium with a reservoir of electrons at chemical potential 
p, must be just 2 p .  The condensate is described by a complex order parameter Y ( r )  
which has many of the properties of a wavefunction for pairs. For instance, in the 
absence of magnetic fields the supercurrent carried by the condensate is given by 

(2.1) 
eh. 

2im 
Js= - (Y*VYP-YVY*) 

which can be re-written as? 

where np is the pair density UTY* and 6 is the phase of UT. The pair density rises 
steadily from zero at Tc to a finite value at low temperatures. 

When two superconductors are well separated, they are quite independent and can 
be considered separately. When they have a substantial superconducting contact they 
form a single superconductor, to which the above results apply: they are said to be 
strongly linked. There are, however, intermediate cases in which electrons can flow 
from one superconductor to the other, but only so weakly that each superconductor 
can be regarded as essentially still in static equilibrium. This happens, for instance, 
where the superconductors are separated by a thin layer of oxide through which 
electrons can tunnel quantum-mechanically, or by a thin layer of normal metal or 
semiconductor, or by a very small bridge of superconducting material. In  such 
situations one sometimes finds that a small supercurrent (i.e. DC current at zero voltage) 
can flow through the link and that the magnitude of this supercurrent is given, not by 
( 2 , 2 ) ,  but by the relation 

where 4 is the phase difference, 81 - 62, between the superconducting wavefunctions 
on the two sides of the linkf. This is the Josephson supercurrent in its simplest form. 
When this relation (or some similar periodic dependence on 4) holds, the two super- 
conductors are said to be weakly linked. 

In his original letter Josephson (1962a) presented an economical but fundamental 
argument which demonstrated theoretically that ( 2 . 3 )  must hold for the special case of 
a tunnel junction. This argument went directly to the heart of the detailed micro- 
scopic theory of superconductivity and illuminated features of that basic theory which 
had previously been obscure or incompletely understood. This part of his achieve- 
ment can only be understood in terms of the concepts of the microscopic theory itself, 
and we shall try to indicate what he did and why it was so significant in 94. Quite 
separate from this is the remarkable range of consequences of ( 2 . 3 ) ,  mostly also predicted 
briefly in the original letter, and also known as 'Josephson effects'. These consequences 
all follow from the fact that, according to ( 2 . 3 ) ,  the supercurrent through a weak link is 
periodic in the phase difference 4, in contrast to the supercurrent through a strong link 
which, according to ( 2 . 2 ) ,  is linear in 4. This periodic dependence allows the Joseph- 
son effect to be used as an instrument which makes the quantum-fluid nature of the 
superelectrons conspicuous. It is these fascinating consequences of the Josephson 

t We assume e = /el and is positive: note that V9 is in the direction of the electron momentum 
and is in the opposite direction to the electric current. 

$ Note the sign of the definition: 4 is minus the phase difference measured across the junction 
in the forward current direction. With this definition I1 is positive. 

IS = 11 sin 4 ( 2 . 3 )  
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effect which give it its practical importance, and to understand them we do not need the 
detailed theory which lies behind Josephson’s prediction of (2.3).  I t  will be enough if 
we can see in simple, general terms why a relationship of this form might be expected 
to arise. This is our aim in this section. Readers not interested in the microscopic 
implications of Josephson’s work may like, after reading this section, to jump to $5, 
where we begin our consideration of the Josephson effects which arise as a consequence 
of (2.3). 

2.2. The Josephson supercurrent as a pair transition 
Perhaps the simplest picture of the Josephson supercurrent is to regard it as due to 

the quantum-mechanical transition in which a pair of electrons leaves the superfluid 
on the right and enters the superfluid on the left. I n  this picture we ignore the details 
of what goes on in the barrier region between the superconductors and regard the 
barrier simply as a mechanism which allows such transitions to occur. The nature of 
the Josephson effect can then be illuminated by considering the results of ordinary 
time-dependent perturbation theory, where one finds that the rate of change of 
occupation of the j th  state is given by 

i 

where Vjg is the matrix element of the perturbation. Ordinarily, we are interested in 
the case where aj is small and the system is close to one of its original eigenstates; in 
this case, as is well known, the transition rate is proportional to the density of final 
states and to the square of the matrix element. This applies, for instance, to the 
tunnelling of ordinary electrons between normal metals at a finite voltage, where we 
may have occupied states on the right and empty states at the same energy on the left 
(figure 2(a)) and we wish to calculate the current. But if we start with a mixed state in 
which, say, laj12= lai12= 8, and for simplicity take Vpi to be real, then ( 2 . 4 )  reduces to 

where 4 is the phase difference betweeny and ag. In such a case the transition rate is 
proportional to the matrix element itself and to the sine of the phase difference between 
the states. I t  is this form of the theory which applies to the Josephson supercurrent 
and it does so because the starting state is a mixed state in which the effective pair 
wavefunction Y is finite on both sides of the barrier. From this point of view the form 
of the Josephson supercurrent is exactly what one should expect for a mixed state 
according to simple perturbation theory. 

We shall examine a detailed calculation of the supercurrent as a pair transition in $4 
where we shall see that, not surprisingly, the matrix element for transferring a pair 
across the barrier is proportional to the square of the matrix element for transferring a 
single electron. This fact originally led physicists to believe that pair tunnelling through 
insulators would be so small as to be unobservable, and indeed for this reason Joseph- 
son himself was looking for phase-dependent terms in the normal current when he made 
his calculation (see Josephson 1974). But we now see from our remarks above that this 
was incorrect because the supercurrent is linear in the pair matrix element, and thus of 
the same order in the electron transmission factor as the normal current. This is why 
the tunnelling supercurrent is observable. 

52 



75 8 J R Waldram 

2.3. The free energy of the weak link 

The point of view of the previous subsection, in which we regard the weak link 
simply as a transmission mechanism, has the merit of simplicity and is close in spirit to 
the tunnel Hamiltonian method originally adopted by Josephson. But for weak links, 
such as layers of normal metal of the order of 10-7 m in thickness or superconducting 
bridges 10-6 m long, this attitude becomes rather artificial because the link is large 
enough for much interesting physics to be happening inside it, and indeed, in such 
weak links the order parameter Y has a well defined value varying from point to point 
inside the link. Can we say anything about how Josephson effects can arise in such a 
case? 

We can do so by considering the energy in the link. We assume that the amplitude 
and phase of Y in the two superconductors is not disturbed by the small current in the 
link and that the phase difference 4 can be externally controlled. Suppose now that 4 is 
gradually increased by 2n. The boundary conditions on the link have now returned to 
their initial condition. If the link itself then returns to the same state, we can regard it 
as a true weak link, for the free energy must be a periodict function of 4, and we can 
deduce the Josephson effect by the following argument. Since the energy of the pairs 
is Zp, we assume that 4 is given by Ad = - 2p. We can thus change 4 slowly by apply- 
ing a very small voltage V to the link. If V is small enough, the normal current 
induced can be ignored in comparison with the supercurrent and the electrical work 
done can be taken to be equal to the increase in free energy. Thus 

Ir,V=F 

= F‘(4)d (2.6) 
= F’(4)2e V/h 

where V= (pz - pl) /e  is the forward voltage across the link. On cancelling the voltage 
from this equation, we find that the supercurrent is a periodic function of 4, This is a 
generalized form of the Josephson effect. In  the simplest case where the free energy is 
an even sinusoidal function of 4, we have F= - Fo cos 4 + constant, and using (2.6) 
we obtain Josephson’s relation once again, with 11 = ZeFo/R. 

One can use this result to discuss the effect of electrical noise on the observability 
of the Josephson effect. If the free energy Fo becomes comparable with or smaller 
than KT, the thermal fluctuations in 4 will become large and the Josephson currents 
will be smeared out. It follows that the effect will be unobservable if the critical current 
I1 is much smaller rhan 2ekT/h. Unless the electrical leads to the junction are very 
carefully screened, the electrical noise will correspond to room temperature and the 
corresponding minimum observable critical current will be a few PA. For very well 
screened junctions, critical currents of the order of 10-7 A are visible. We shall see 
later that for tunnel junctions and microbridges the maximum value of I1 is .rrA/2eR, 
where A is the gap parameter, typically of the order of 10-22 J ;  in such junctions we see 
that R must be less than about 100 Cl. I n  practice, Josephson effects are normally 
observed in tunnel junctions having low resistances, in the range 1-10 Cl. 

The argument given here for the Josephson effect depends on the assumption that 
on increasing 4 by 2n, the link returns to the same state. Under what circumstances 
will this happen? For a long, thin superconducting wire, for instance, we would not 
expect this behaviour, There is a finite value of Y in the wire at all points and the effect 

t If the link is symmetrical the function must be an even function of $ also. 



Josephson efsects in superconductors 759 

of increasing 4 by 27~ is simply to set up a phase gradient along the wire. For a link to 
behave as a weak link the phase gradient along the link must be, as it were, cut and 
rejoined with a phase change of 277 and it is not difficult to see that this can only occur 
if at some stage the magnitude of Y falls to zero at the centre. From our present point 
of view, this is the criterion for the Josephson effect. If the link can effectively resist the 
tendency of Y to fall to zero at the centre when += 7 ~ ,  it will not show true weak link 
behaviour. If, on the other hand, Y can fall to zero when 4 = 77, the link will return 
smoothly to its starting state when Y =2n  and the Josephson effect will occur. We 
shall examine this picture further in $9.2. 

2.4. The order parameter and electric and magnetic jields 

In  discussing the Josephson effects we shall need to refer to a number of general 
properties of the superconducting order parameter Y introduced in 92.1, which we 
collect together here for convenience. Discussion of the microscopic meaning of Y is 
deferred to $3.2. 

We first note that in the presence of a magnetic field described by a vector potential 
A ,  a term - 2e2YY*A/m must be added to the right-hand side of (2 .  l), so that (2.2) 
becomes 

Ii AJs= -- Ue-A 
2e (2.7) 

where A = m/(2npe2). It follows that 

V A (AJs)= - B. 
This is the second London equation, which shows that a constant supercurrent is 
associated with magnetic field rather than electric field and from which we can show 
that external magnetic fields only penetrate a distance X = (A/po)l/Z below the surface of 
a superconductor; X is of the order of 10-7 m. If we take the time derivative of (2.7) 
we find that 

This is the first London equation and shows that an electric field, or more strictly a 
gradient of electrochemical potential, produces an acceleration of the supercurrent. 
We have here used the fact that the rate of change of 0 is given by 

AB= -2p (2.10) 

as one would expect for a wavefunction for pairs of energy 2p. This relation will be 
important in understanding the Josephson effect itself. Finally, if we consider a bulk 
superconductor threaded by a hole, then by considering a line integral round the hole 
on a path deep in the metal on which JS is zero (for supercurrent is always concentrated 
into a small skin depth near the surface), we find that the magnetic flux in the hole is 
quantized, for 

2ef A.dl=Zrrnh 

@ = n@o 
or (2.11) 
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where @ is the magnetic flux passing through the hole and @O is the flux quantum, 
h/2e, equal to 2-07 x 10-15 Wb. In  some circumstances a superconductor may contain 
a line along which Y is zero and around which the phase increases by 27. When this 
happens, supercurrents encircle the line and generate a magnetic field near and parallel 
to the line. The field and current only exist near the line and are screened from regions 
in the bulk distant from the line. Such a line is analogous to a vortex line in a non- 
viscous liquid and is known as aflux line. The above argument can be applied to a flux 
line as well as to a real hole and we see that the flux line is associated with one quantum 
of flux. 

If we examine (2.7) we see that the phase of the order parameter, like the phase of a 
pair wavefunction, must be gauge covariant: if A is changed to A + Vx, then 0 must be 
changed to 0-2exIA. In this connection we must note that in the presence of a 
magnetic field the which appears in Josephson’s relation ( 2 . 3 )  must be defined as 

( 2 . 1 2 )  

where the integral is to be taken along the direct path perpendicular to the junction. 
This gauge-invariant phase difference is analogous to the ‘gauge-invariant phase 
gradient’ expressed by ( 2 . 7 )  which determines the supercurrent in bulk material. 

3. The background to Josephson’s calculation 

We shall present Josephson’s first calculation of the tunnelling supercurrent in $4, 
In  this section we aim to outline enough of the microscopic theory of superconductivity 
both to explain his formalism and to make clear the nature of his discovery. Readers 
already familiar with the BCS theory should note the particular attention paid to 
questions of phase and particle number in what follows. 

3.1. The BCS condensed state 
As is well known, the theory first proposed by Bardeen et aZ(l957, referred to as 

BCS) has successfully explained the fundamental features of superconductivity. The 
theory starts from the idea that in some metals there is an effective attraction between 
electrons near the Fermi surface. This attraction is described by a term in the 
Hamiltonian+ 

which shows that a pair of electrons in states k, - k i- q can be scattered by their mutual 
attraction into states k’, - k’ + q having the same total momentum. BCS showed that 
when such an attractive interaction is present the usual Fermi-sea ground state 

$Fermi= akf$Vi3C ( 3 . 2 )  
k < k p  

is unstable and they suggested that there are low lying condensed states having the 
formt 

t The details of the BCS theory are set out in several textbooks (see, for instance, Rickayzen 
(1965)). We are assuming for simplicity that the matrix element Vmay be treated as constant; 
this is a good approximation for many superconductors. 

$ In  the full theory the paired states have opposite spin. We omit spin indices for simplicity. 
Following Anderson (1958) we give careful emphasis to the often ignored phase factor eie. 
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where Uk, v k  are real, u g 2 + v g 2 = =  1 and the phase 9 is arbitrary. We note that in this 
wavefunction electron states are occupied in pairs having a common momentum liq 
(which is zero when the supercurrent is zero). The  probability that a particular pair is 

Figure 1. The BCS state with zero supercurrent. (a) Typical pairs occupied in the condensate. 
(b)  Probability v . 2  of pair occupation near the Fermi surface. (c) One-particle 
excitation energies on electron and hole branches near the Fermi surface. ( d )  Corre- 
sponding density of states. (e) Temperature dependence of / A l .  cf) Theoretical 
temperature dependence of Josephson current compared with results of Fiske (1964). 

occupied is v k 2 ,  which falls smoothly from one below the Fermi surface to zero above it 
(figure I@)). Clearly, such a state has a greater kinetic energy than the Fermi sea, but 
the interaction energy is negative and given by 

Eint= - v ukvkuk lvk l  
k, k' 

= - Uklvkf v u k v k  
k' k 

where we have introduced the order parameter or gap parameter, I A 1. We notice that 
this negative interaction energy depends on the fact that the pair states are neither 
definitely occupied nor definitely empty; Eint would be zero if either U or v was always 
zero, as in the Fermi sea. BCS used the chemical potential p as the origin of energy, 
which is equivalent to treating the superconductor as being in equilibrium with a 
reservoir of electrons of energy p, electrons not in the superconductor being in the 
reservoir. They found that their state $BCS could have a lower total energy than 
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$Fermi, and by minimizing the energy with respect to uk) v k  they showed that 

vk2= & ( l -  € k I E k )  

uk2 = + €kIEk) (3-5) 
where 

Ek= / (Ek2+  1A]2)1/2( 

and €k is the one-electron energy in the normal state, measured from the Fermi energy, 
p. (We shall see in the next section that E k  has an important significance as an excita- 
tion energy.) If we combine the definition of [AI in (3.4) with (3.5) we find the self- 
consistent relation 

which can be solved to find I AI. At finite temperatures one-particle excitations (which 
we shall discuss in the next section) may be present and they have the effect of prevent- 
ing some of the paired states from contributing to the interaction energy. This reduces 
I AI, which falls as the temperature rises and reaches zero at a critical temperature, T, 
(figure l (e ) ) .  At this point the BCS state is identical with the Fermi sea. We notice 
that the characteristic feature of $BCS is the mixture between occupied and empty pair 
states near the Fermi surface. Equations (3.5) show that the degree of mixing increases 
as 1 AI increases; I AI is a measure of the degree of mixing. 

We must emphasize here certain points which are particularly important when we 
turn later to understanding the Josephson effect. The BCS wavefunction (3 - 3 )  is 
unusual in the sense that it is not an eigenfunction of particle number. There is 
nothing formally incorrect in this. The Hamiltonian commutes with the number 
operator, and consequently simultaneous eigenfunctions of both must exist, but if the 
Hamiltonian has degenerate eigenfunctions then, although it must be possible to resolve 
them into eigenfunctions of the number operator, energy eigenstates which are not 
number eigenstates can also exist. Indeed, if we regard the BCS state as being in 
contact with a reservoir of energy p, then for such a system a linear combination of 
states in which different numbers of electrons are in the reservoir is perfectly natural. 
We must note that the phase factor eie which appears in $BCS is entirely arbitrary, and 
thus the BCS state is indeed highly degenerate. This corresponds to the fact that it can 
be resolved into a large number of degenerate components, each containing a definite 
number of pairs, N ,  and having a phase factor eiNe. At this point in the argument, the 
fact that the BCS state is not an eigenstate of particle number appears simply as a 
convenient artifice: we choose to work with BCS states which are not eigenstates of 
particle number because they are mathematically convenient, knowing that we can 
always reconstruct from them states of definite occupation if we need them. 

When we come to consider tunnelling, it is confusing to imagine each super- 
conductor in contact with a reservoir and we must ask how $BCS is modified if we are 
dealing with an isolated superconductor. The answer can be seen by noting that the 
components of $BCS corresponding to occupation of exactly N electrons remain good 
solutions, but since we must now exclude the reservoir energy from the Hamiltonian, 
instead of being degenerate, the states corresponding to different pair occupations 
differ in energy by 2 p  The effect on $BCS is that the phase factor eis becomes time- 
dependent and can be written as exp [i(& - 2pt/A)] ; otherwise nothing is changed. 



Josephson effects in superconductors 763 

3.2. The complex order parameter in BCS theory 
In microscopic theory it has become usual to combine the concepts of the BCS gap 

parameter /A1 and the complex order parameter Y into a single complex quantity 
defined as 

where V is the BCS interaction parameter and I&) is the usual Fermi operator. If we 
apply this definition to the BCS state (3.3), for instance, we find that 

4 9  = W)($(~)W> (3.7) 

A(r)= V C exp [i(k+k’).r](akak,) 
k,  k‘ 

= v exp [;(a. r - 2pt / f i  + eo)] 
k 

and we see that the magnitude of A is just the gap parameter given by (3.6), while the 
phase of A varies in space and time as the phase of Y would be expected to vary, and at 
r =  0, is the same as the phase 0 appearing in the BCS wavefunction (3.3). 

In  what sense can A(Y) be regarded as an effective pair wavefunction? In  the formal- 
ism of second quantization the operator pair $(r~)$(r~)  takes the place in a many- 
particle system of the wavefunction Y(r1, r2) for a pair of particles. I t  follows that if 
such a pair of operators could be replaced by a macroscopic expectation value the 
system would behave like a system of independent pairs of fermions? each in the state 
Y(r1, rz). The expectation value ($(r)$(r)) which appears in the definition of A(r) can 
be regarded as the centre-of-gravity part of Y(r1, rz) if we identify r as i(r1 +rz). Thus 
A(r) would be identified with an effective wavefunction for pairs and the super- 
conducting properties discussed in 92.4 would follow automatically. Unfortunately, 
the truth is more complicated. The existence of such a macroscopic expectation value 
is certainly connected with the appearance of superconductivity, and the appearance of 
the factors of 2 (for pairs) in the fundamental equations (2.7) and (2.10) determining 
the effects of electric and magnetic fields on the phase of A is also justified by its 
definition (3.7). But when we come to calculate the effective value of np in the expres- 
sion for the supercurrent (2.2), we find that it is not related in any simple way to A@). 
The reason is simply that there are other contributions to the supercurrent besides that 
calculated from the expectation value of ($$) (there is, for instance, a back-flow of 
excitations at finite temperatures). The amplitude of the effective wavefunction has 
therefore to be calculated microscopically. We shall see later that the same is true of the 
Josephson supercurrent: it depends in the expected way on the phase of A but its 
amplitude requires a special calculation. 

We must here notice an important point. Because the operator pair $$ reduces the 
number of particles by two, A(Y) as defined by (3.7) only has a definite meaning if we 
work with a state like (3.3) in which the number of pairs is indeterminate. This is no 
accident. The part of #BCS containing exactly N pairs includes a factor eiNe, so we see 
that -ia/aO is the operator for N. Consequently, hO and N are a canonical pair of 
quantities and there is an uncertainty principle of the form 

Thus the phase of the order parameter is only well defined where N is uncertain, and 
vice versa. As Josephson (196210) emphasized in his Fellowship dissertation, we have 

f For bosons we could have considered the simpler equivalence of <I,@)) to an effective one- 
particle wavefunction Y’(r), but for fermions the exclusion principle prevents such an expectation 
value from reaching a macroscopic value. 

AOANa 1. (3.9) 
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here a case of broken symmetry, the appearance at a phase transition of an ordered state 
having lower symmetry than the Hamiltonian which produced itj-. Just as in a ferro- 
magnetic transition a magnetic moment appears which may point in any direction so, 
in the BCS wavefunction, a phase appears which can take any value. As, in the ferro- 
magnet, the asymmetry may be removed by working with an ensemble of states having 
all possible directions of the magnetic moment so, in the superconductor, the phase 
may be blurred by working with states of fixed N ,  if we wish. In a superconductor the 
absolute phase is probably not of great importance, and this means that we can work 
with states having a fixed total number of particles and not miss any important 
phenomena. But the phase difference between points in space is another matter. I t  is 
these phase differences which are responsible for the superconducting properties and 
to understand them it is essential to use wavefunctions in which the particle density at a 
given place is indeterminate. Josephson was intrigued by the possibility of directly 
measuring the phase difference between two superconductors and it was this idea which 
led him to calculate the current across a weak link as a function of the phase difference. 
This meant using wavefunctions in which the division of pairs between the two sides 
was indeterminate. As we shall see, the use of this type of wavefunction proved crucial 
in the correct derivation of the currents. 

3.3. Excitations of the superconducting state 

As well as describing the ground state, the BCS theory also provides a framework 
for discussing the excited states of the system. It is found that there are operators, 
first written down by Bogoliubov, which create or destroy excitations analogous to 
electrons above the Fermi surface and holes below. These operators take the form 
(when q = 0) 

(3.10) 

with conjugate annihilation operators. We notice that far above the Fermi surface, 
where U tends to 1 and v to 0, the operators are pure electron operators, while far below 
the Fermi surface they are pure hole operators. Near the Fermi surface they have 
mixed character and change smoothly from being electron-like to being hole-like. The 
excitation energy is the quantity E h  = I(q2+ 1A12)1/21 which was mentioned in the last 
section. The variation of excitation energy with ek is shown in figure l ( c )  for normal 
metals as well as superconductors. We notice that in the superconductor the minimum 
excitation energy is /AI-there is an energy gap in the excitation spectrum. The 
peculiar nature of the excitation operators means that matrix elements for electron 
processes are modified when we consider the analogous processes in superconductors. 
Normally the matrix element is multiplied by a factor depending on u k ,  Z I ~  and known 
as a coherence factor. The coherence factors explain the abnormal microwave resistance, 
ultrasonic attenuation and spin relaxation times seen in superconductors, for instance. 

As was emphasized by Anderson (1958) before the appearance of Josephson’s 
theory, the Bogoliubov operators do not exhaust the possible ways in which electrons 
can be added to or removed from superconductors, for one can also add electrons in 
pairs to the condensate by making small increases in the vk2 values for a large number of 
pair states. Because the BCS energy is a minimum with respect to such small changes, 
such electrons must always enter at the reservoir energy p. The density of states of 

.t. Anderson (1964) also emphasized the significance of this idea. 
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excitations in a superconductor is therefore as shown in figure l(d). Excitations can be 
added onto either the electron-like or the hole-like branch at energies above I AI ; since 
the states are uniformly distributed in E L  and E k 2 =  E B ~ +  \A12 there is a sharp peak in 
the density of quasiparticle states just above the gap. Pairs of electrons can also be 
added without limit to the condensate at the Fermi energy. I n  considering this latter 
process, it is convenient to define apair operator S+, in the following way. We imagine 
the BCS state resolved into normalized components of definite occupation as follows: 

$BCS=. . . ~ N - ~ $ N - z  exp [i(+N- l)e] +UN$N exp (&;NO) 

We then define the pair operator and its inverse as having the properties 
+aN+2$N+zexp [i(+N+l)e]. . .. (3.11) 

(3.12) 

for all N .  Clearly S and S+ commute and S+S= 1. In the BCS state the coefficients 
a N  are very slow functions of N ,  though aN will peak at a value of N corresponding to 
the Fermi level. Consequently, to a close approximation we can write S+$BCS= 
e-isi,bBCS and S$gcs=eie$Bcs. These pair operators were used by Josephson in his 
tunnelling formalism. 

3.4. Single-particle tuiinellingt 

The idea that particles can tunnel through potential barriers in the form of an 
evanescent wave is as old as quantum mechanics and was applied to metal-insulator- 
metal junctions by Sommerfeld and Bethe as early as 1933. The invention of the Esaki 
diode in 1957 aroused active interest in practical investigations of tunnelling in solid- 
state physics, and in 1960 Giaever published the first results on tunnelling involving 
superconductors. The idea is that an insulating barrier between two metals (usually 
oxide grown in situ) behaves like a potential barrier whose height is of the order of the 
band gap in the insulator, about 1 eV. If the kinetic energy of electrons at the Fermi 
surface in the metal is of the same order of magnitude, then one can show, using 
elementary quantum mechanics, that the transmission coefficient for electrons is of the 
order of exp ( - ZXa), where X is the decay constant of the evanescent wave and a is the 
thickness of the oxide. As a rule of thumb for most junctions one can say that the 
transmission coefficient is about exp ( - x/A). Typical tunnel junctions are between 
10 A and 20 A thick and have resistances between 1 Q and 104 a. 

The calculation of the tunnel current is very simple in principle. When a voltage is 
applied to a junction, the distribution of occupied states is as shown in figure 2(a). 
Clearly there tvill be a conventional current from left to right given by the usual golden 
rule 

1 = ( 2 ~ p ~ p ~ e T ~ / f t )  J?m [ f ~ ( ~ - e v ) - f ~ ( ~ . ) ]  de 
(3.13) 

where PR, p~ are the electron densities of states on the two sides (assumed constant 
near the Fermi level) and fR, f L  are the corresponding Fermi factors. T2 is an effective 
matrix element for transmission from one side to the other, which can be calculated 

= (277 pRp L T2/h)e2 v 

t Single-particle tunnelling both in normal metals and in superconductors has been reviewed 
extensively elsewhere (see Solymar 1972). Here we limit ourselves to essentials. 
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Figure 2. Single-particle tunnelling, showing densities of states in the semiconductor model 
when a voltage V is applied and the corresponding I-V characteristics €or (a) NIN, 
(b)  SIN and (c) SIS junctions. 

from the simple theory, and is also assumed to be independent of energy. It is clear 
that the junction behaves like a simple resistance which is independent of temperature. 

This theory has been extended in various ways, of which we might note two. The  
question of the variation of the tunnelling matrix element with energy was investigated 
by Harrison (1961) who showed that, at least if the barrier potential rises sufficiently 
slowly at the edge of the metal, the variation of T2 with energy exactly cancels the 
variation of the density of states. Thus placing the factor p ~ p ~ T 2  as a constant outside 
the integral in (3.13) is justified over a wide energy range. It follows that in normal 
metals tunnelling gives no information about the density-of-states function, though it 
can be used to find band edges, etc. We should also note that tunnelling really involves 
three-dimensional wavefunctions in the band gap of the insulator. I t  is found that, 
typically, only electrons moving within about 5" of a preferred direction have an appreci- 
able chance of tunnelling and that the preferred electrons are probably those whose 
wavevector is normal to the interface (Dowman et aZl969). This selection by direction 
has been used to investigate anisotropy of the gap structure in superconductors. 

When Giaever (1960) and others started to make tunnelling experiments on super- 
conductors a surprising and beautiful fact emerged. The  tunnel current appeared to be 
given by 

In  other words, the current behaved as if a 'semiconductor version' p(E)  of the BCS 
density of states (which is a rapid function of energy and shows an energy gap) replaced 
the normal density of states and everything else was unchanged (figure 2). The types of 
I-V curve which were found for SIN and SIS tunnelling are also shown in the figure. 
The  results could be used at once to identify and measure the energy gaps in super- 
conductors as a function of temperature (and later as a function of orientation, magnetic 
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field, magnetic impurity, proximity effects and many other parameters). Even more 
importantly, once the validity of (3.14) was established, it was easy to show by dif- 
ferentiating it that for tunnelling from a normal metal on the right into a super- 
conductor on the left 

CLI 27T2 A e 2 p N  1- -f’(E-eV)ps(E) dE. 
- 0 2  

(3.15) 

At low temperatures - f ’ (E)  becomes essentially a S function and consequently a 
simple measurement of the differential resistance of a tunnel junction as a function of 
bias allows the superconducting density of states to be plotted as a function of energy. 
At the time, this was used to check the validity of the BCS expression for ps(E). Later, 
it became even more important when it was realized that certain small departures 
from the BCS form for ps(E) near the Debye energy were a direct measure of the 
quantity a2( o)F(w) ,  which is the electron-phonon coupling constant multiplied by the 
phonon density of states. The observed structure in ps(E) agreed with the known 
structure in F ( w )  and the values of a2F were used to check the theory of strongly 
coupled superconductors itself (see McMillan and Rowel1 1969). 

The simple result (3-14) was, however, mystifying for several reasons. It looked as 
though the BCS excitations were forgetting about their mixed electron-hole character 
and were carrying exactly one electron across the barrier in real processes whose 
matrix elements contained no coherence factors. It was obvious that the explanation of 
this unexpected simplicity was not trivial and must lie in a proper treatment of tunnel- 
ling for BCS excitations. The hunt for such a treatment was now on. We shall see in 
$4 how this problem was solved and how the idea of Josephson tunnelling itself first 
grew out of the solution which appeared. 

4. Josephson’s first calculation for tunnel junctions 

I have thought it best to describe in some detail Josephson’s (1962a) first calcula- 
tion rather than one of the more general later formulations, partly for historical 
reasons, but mainly because it is more easily followed by the reader unfamiliar with 
Green’s functions, and because it brings out particularly clearly the nature of Joseph- 
son’s innovation. It must be remembered, however, that it is limited to tunnel junc- 
tions and also to weak superconductors in which the excitations are well defined. 
More general calculations have been given by Ambegaokar and Baratoff (1963a, b), by 
Josephson (1965, see $9.1) and by Werthamer (1966, see $8.1). 

4.1. The method of Cohen, Falicov and Phillips (1  962) 
We have noted that the experimental facts on single-particle tunnelling in super- 

conductors were surprising to theoreticians and a number of attempts to explain them 
were made. The first successful calculation was made by Cohen et aZ(1962) and it was 
by an extension of their formalism that Josephson was led to his predictions. We shall 
therefore look closely at their method. 

They considered a system of two metals separated by a tunnel barrier and took the 
Hamiltonian to be H L  + H R  + V ,  where H L  and H R  are the ordinary Hamiltonians for 
the metals to left and right of the barrier and V is given by 
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where the sum is over all electron states in both metals. This extra term they called the 
tunnel Hamiltonian. Neither Cohen et a1 nor Josephson discussed its significance, but 
we note briefly here that it has the desired property of transferring electrons between 
the two sides and is the appropriate term to describe a barrier of negligible width which 
couples together the boundary conditions for the one-electron states on the two sides. 
I t  has been discussed in more detail by Prange (1963) and should be valid for tunnel 
junctions when Y is small. How far it can properly be applied to other weak links is 
uncertain. 

Cohen et a1 calculated the conventional current from left to right in terms of the 
rate of increase of electron number on the left by using the following operator relations: 

- e  I = e N L = -  [NL, H] 
ih 
e 
ih =- [NL, VI (4.2) 

where we have used the fact that N L  commutes with HL and HR. If we treat Vas a per- 
turbation, then naturally the current in the unperturbed state is zero. They therefore 
calculated the perturbation introduced by V to first order and then used (4.2) to 
calculate the current in the perturbed state. In  calculating the perturbation we have to 
remember that even in the absence of Y a superconducting junction having an applied 
voltage is not in a stationary state (the phase difference between the two sides is 
changing) and consequently we must use time-dependent theory in calculating the 
perturbation. We do so by using Schrodinger’s equation to write d# as ( - iH/h)#(t) d t  
and we find that the first-order perturbation at time t can be written formally as 

6#= f exp [ - iHo(t- t ’)/h] exp ( - iHot’/h)#o(O) dt’ 
- C O  lfi (4.3) 

where Ho= HL+ H R  and $0 is the unperturbed state. The current at time t is then 
given to first order as 

(4.4) 
When we are dealing with normal metals we note that both V and I consist entirely of 
terms which change the energy by a definite amount, 6E, and that for such terms the 
effect of the exponentials in Ho is simply to introduce a factor exp [iSE(t’- t) /h] for any 
$0. If, for instance, we pick out the term in UL+UR in Y and the term in UR’UL in I and 
insert them into (4.4) we find after making the thermal average over quasiparticle 
occupation numbers a contribution to I(t) equal to 

Tze - f f ~ ( l - f ~ )  1 exp [ i (EL-~~-eY- i6 ) ( t ’ - t ) / h ]  dt’+cc 

where the infinitesimal 6 is included to indicate that the perturbation was switched on 

1 

(4.5) 
h2 - C O  
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gradually in the past. On performing the integral and summing over similar contribu- 
tions we find that 

If we now replace the sum over R by an integral over the density of states, the principal 
parts cancel and we are left with 

from the residues. The fact that only the residues contribute shows that the current is 
due solely to real transitions and indeed (4.7) can be interpreted simply as the sum of 
the transition rates for electrons crossing the barrier calculated according to Fermi's 
golden rule where Y is the perturbation (we have treated T z  as constant and indepen- 
dent of spin for simplicity : these simplifying assumptions introduce no important 
errors), This is the simple result for normal metals which we discussed in $3.4. 

4.2. The currents between superconductors 

In  calculating the tunnel current by the same method when superconductors are 
involved we must first express V and I in terms of excitation operators which add a 
definite energy to the superconductor. At this point Josephson noted that the Bogoli- 
ubov operators (3.10) do not add exactly one electron to the system and this means 
that they only add a definite energy if all energies are measured from the Fermi level. 
In  the tunnelling situation we cannot do this on both sides of the barrier simultaneously 
when the voltage is finite and consequently the Bogoliubov operators cannot be used as 
excitation operators. To meet this difficulty Josephson proposed the use of a modified 
operator. A typical Josephson operator has the form 

"2 = Ukakt - vka-kS+ (4 8) 
in place of ( 3 ,  lo), where S+ is the normalized pair operator which we defined by (3.12). 
The new operator adds exactly one electron+ and it remains a valid excitation operator 
of energy E k + p ,  whatever origin is used for the energy. In  terms of these new 
operators, terms such as aLtaR which appear in V and I can be expanded as 

aL t a R =  (uiai t + Vla-lSl+)(Urar + Wrct-r'Sr) 

(4.9) = UlUra l  t 011 + vlvra-la-rtSl+Sr + U1vra$a-r+Sr + V1Ura-1arSl+ 

where an operator with a negative suffix such as a-1 refers to a time-reversed state. 
Clearly we now have a wider range of intermediate states to consider in calculating the 
current using (4.4), but the calculation is essentially similar to what we did for normal 
metals. This time the intermediate states in (4.4) may involve pair creation and 
annihilation as well as transfer of excitations, as shown in figure 3. 

When we consider the various terms in (4.4) it is at first sight natural to assumel 
that the term in altar in V can only be paired with the term in artal in I .  With the 
analogous assumption for each of the four types of operator appearing in (4,4), we find 

f Josephson also used operators which remove exactly one electron, but we shall not need to 

$ This crucial assumption excludes the Josephson effect, as we shall see. 
refer to them. 
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Figure 3. Processes in superconductive tunnelling in which one electron passes from right to 
left corresponding to the four terms of (4.9). Above : Josephson's description; 
below : formal semiconductor description. The Fermi factors and energy denomi- 
nators for the four terms appear in (4.10). 

that I should be given by 

This result can be simplified in two respects. The  sum has to be taken over hole and 
electron branches on both the left and right of the junction, and remembering that 
U and v are interchanged for the hole-like branch (and that u2+v2= 1)' we see that on 
summing over the two branches the coherence factors all disappear. The four terms 
correspond to the four processes shown diagrammatically in figure 3. Examination of 
the energy denominators and Fermi factors shows that the four processes have simple 
interpretations in the 'semiconductor representation' also shown in the figure, in which 
we return to the notion of filled states below the Fermi level for negative values of E. 
Thus equation (4.10) may be reduced to 

(4.11) 

as in the normal metal, provided the sum is now taken over 'semiconductor' states 
including negative values of EL, ER and identified by capital suffixes. As in the normal 
metal the principal parts cancel and we are left with the simple integral 

Io= 2.rreT2 ~ 1 [f(E- eV) - f ( E ) ] p ~ ( E - e v ) p ~ ( E )  dE  (4.12) ti -m 

the result corresponding to real tunnelling processes which Giaever's experiments had 
already suggested. Cohen et aZ(l962) realized that there were difficulties about the 
assumption mentioned above, and in fact limited their calculation to the case in which 
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only one metal was superconducting. They obtained a result equivalent to (4.12), 
which is correct in that situation. This actually left open the question of what happens 
when two superconductors are involved, but it was widely assumed by physicists at the 
time that the calculation had, apparently very satisfactorily, explained quite generally 
why the coherence and charge factors cancel out in tunnelling between super- 
conductors. What really happens when two superconductors are involved we must 
now discuss. We must recognize at this point that the tunnel Hamiltonian method 
developed by Cohen et aZ(1962) provided Josephson with the formal framework to 
describe tunnelling supercurrents for which he was already searching, and therefore 
played a major role in the new developments. 

Josephson's crucial contribution to the calculation was to point out that the 
assumption made above is only valid if the states involved are eigenfunctions of the 
electron number. This in turn implies that the phase difference across the junction 
must be indeterminate, on account of the uncertainty principle mentioned in 53.2. 
But as we saw in the same section he was searching for effects which would arise when 
the phase difference was well defined, in which case the pair occupation on each side 
would be indeterminate. For this purpose it was essential to use states of mixed occu- 
pation of the BCS type. For such a wavefunction it follows from the discussion 
following (3.12) that a term in I such as ( - T-l,-rv-lv-rS1+Sr)olrt,l can be replaced by 
(- T-1, -rD1vr e-'+)artq where 45 is the superfluid phase difference between the two 
sides. Such a term in I could now be paired with the term ( Tl,rUIUr)altolr in V and on 
adding the four new types of cross term we find an extra contribution to the current 
given bv " 

(4.13) 

where, as in the previous section, the sum over hole and electron branches has been 
performed and four terms have been combined into one by using the semiconductor 
representation in which negative values of ER, EL are to be included in the sum and the 
product uv is regarded as negative when E is negative. We have also assumed time- 
reversal symmetry by writing T-1, -r = Tr, 1%. In  this case the presence of the phase 
factor e-i# means that the principal parts do not, in general, cancel and we are left with 
an extra current 

(4.14) 
with 

IJ = II( V )  sin 4 + ai( V )  COS V 

coming from the principal parts and 

2.rreT2 Sa de -* [f(E-eV)-f(E)] (4.16) a~(v)V=--- PlPr (E-eV)E li 

from the residues. The first term is what is usually regarded as the Josephson super- 
current. I1 is finite at zero voltage, and when A1 = A2 is given by (figure l(f)) 

(4.17) 

We see that at T = 0 the critical current is just the current which would flow in the 
normal junction at an applied voltage of gTA/e. The calculation of I I (  T)  in the general 



772 J R Waldram 

case was given by Ambegaokar and Baratoff (1963a,b). I t  is clear from inspection of 
(4.15) that Il(V) increases with increasing V,  peaks where e V = 2 A  and then falls 
steadily: the details of this effect will be discussed in $8.3. The second term, in cos 4, 
is zero at zero voltage and can be regarded as an extra phase-dependent contribution to 
the ordinary quasiparticle conduction of the junction. We shall examine this term in 
more detail in $8.2. 

Let us consider the zero-voltage supercurrent as a quantum process. I t  is a second- 
order process in the tunnel Hamiltonian which transfers a condensate pair across the 
junction. A typical intermediate state is shown in figure 4(a) and we see how pairs 

hv 

h b S  

2 h v ~ ;  = B A  

( a )  I b l  (Cl 

Figure 4. DC Josephson currents as a second-order quantum process. (a) Typical transition 
involved in DC supercurrent at low temperatures. (b)  Stimulated emission in the 
presence of microwave excitation, corresponding to the first DC supercurrent step of 
figure 11 ; the case drawn has h v = 4 A ,  corresponding to the Riedel peak. (c)  Example 
of very-high-frequency fifth harmonic mixing taking advantage of the Riedel peak 
and involving high-order stimulated emission in the presence of a strong LO signal; 
vs is the signal frequency, V L  the LO frequency and the IF is treated as D C - O U ~ ~ U ~  (see 
$11.2). 

cross the barrier in two steps of the type appearing in (4.9). What is peculiar is that, 
although this is a second-order process, the current is still proportional to T2 and not 
T4 (in which case it would not have been observable in most junctions). The reason 
for this was discussed in general terms in $2.2 and we can usefully remind ourselves 
here that the Josephson current can be regarded as the pair current due to second- 
order tunnelling between states which are mixed in the sense that a given pair in the 
condensate is equally likely to be on either side of the junction. From this point of view 
again we see that the uncertainty in location of the pairs is crucial to the appearance of 
the Josephson current. 

We have still not made completely clear why Josephson was right in believing that 
in practice the condensate will have well defined phase and indeterminate number 
density, rather than the other way round. The answer is to be found in the boundary 
conditions. If one had a perfect voltage source, then there is no reason why the phase 
across a junction should be well defined. In practice, however, all ordinary sources 
have some internal impedance. If we connect such a source to a superconducting 
junction it behaves as a pure current source and the phase difference across the 
junction is forced to adjust itself so that the junction delivers the correct current. Thus 
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if we start with a wavefunction where n is definite and 4 indeterminate, the com- 
ponents of different 4 will change in such a way that the phase differences become 
identical. In  this process the currents flowing across the junction for the different 
components will be different and the number distribution will become indeterminate. 
Thus in practice the boundary conditions ensure that 4 is well defined, as Josephson 
assumed. Exactly the same process ensures that phase differences from point to point 
in a bulk superconductor are also well defined. 

5. The basic Josephson effects 

I n  his original letter Josephson (1962a) predicted in outline a surprisingly large 
number of physical consequences of his theory. Discussion of these consequences will 
take up much of the rest of this review. I n  this section we shall discuss briefly what the 
original predictions were and examine some of the early experiments which first con- 
firmed his ideas. 

5.1. Josephson's predictions 

It will be useful to begin by summarizing the basic equations governing a weak 
link. It is worth emphasizing again that they all depend on the quantum character of 
the superfluid and thus on the existence of the order parameter Y" (or A) which is 
gauge-covariant in the same way as a wavefunction for particles of charge - 2e. The  
eauations are 

which defines the gauge-invariant phase difference across the junction. I n  the presence 
of a magnetic field, the integral is to be taken along the direct path perpendicular to the 
junction. Closely related to this is the time-dependent equation 

or 

where V is the forward voltage across the junction. In  the presence of a changing 
magnetic field V is to be measured along the direct perpendicular path. This result 
depends on (2. lo), a microscopic proof of which has been given by Gor'kov (see 
Abrikosov et al 1963). The  precise validity of this relation has been examined in 
connection with the measurement of e/h ($11-1). It is generally agreed that it is exact 
and that V is the voltage across the junction measured by an ordinary voltmeter. 
Finally we have the Josephson relation itself, which we shall write in simplified form as 

I = Is + IN 
I= 11 sin 4 + VjR. 

or 

This equation is not exact. We have already seen that for weak links in general we 
merely expect the supercurrent to be periodic in 4 and not necessarily sinusoidal; and 
indeed, if Josephson's calculation for tunnel junctions is carried to higher order, more 
general periodic terms do appear. Moreover, as we have already seen for tunnel 

(5.3) 

53 
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junctions, I1 and R are in general both voltage-dependent and R is also phase-depen- 
dent. The somewhat crude model represented by (5.3) in which we treat 11 and R as 
constants does however show most of the important effects. I t  is known as the 
resistively shunted junction or RSJ model and we shall from now on use it frequently, for 
simplicity. 

A surprisingly large number of physical effects follow from these three equations, 
almost all of them noted briefly but explicitly in Josephson’s original letter (1962a) and 
all developed in his Fellowship dissertation and his Doctoral dissertation, which were 
not published at the time. Some of these will be described briefly now. 

5.1.1. The LE Josephson eflect. When the voltage across the junction is strictly zero 
then + is constant according to (5.2). Thus according to (5.3) the junction can carry a 
DC supercurrent depending on the value of +, but lying in the range - 11 > IS > 11. The 
DC I-V characteristic therefore has a ‘supercurrent spike’ at zero voltage. 

5.1.2. The AC Josephson effect. At a finite voltage we can integrate (5.2) and find that += (2eVo/A)t= wvt. Then (5.3) shows that there is no DC supercurrent but an AC 
supercurrent of amplitude I1 flows in addition to the normal DC current. The frequency 
of oscillation is known as the Josephson frequency and takes the value of 4.836 x 1014 
Hz per volt DC applied. 

5.1.3. The inverse AC Josephson eflect. If an AC voltage of the form VS cos (wst)  is 
superimposed on the DC voltage VO, integration of (5.2) shows that 4 varies as 
wvt + (2eVs/Aws) sin (wst)  + $0. On inserting this variation into (5.3) we find that the 
supercurrent is phase-modulated, having components at the frequencies w v  k nus .  In 
detail we find that 

Is = 11Jn(2eVs/hws) sin (wvt  i: nos t  + 40) (5.4) 
9L 

where the J ,  are ordinary Bessel functions. Thus the junction mixes multiples of the 
applied frequency with the natural Josephson frequency. In  particular, when 
WV = nws (that is, when V =  n(hws/2e)) there is now a DC supercurrent in addition to the 
normal current (see figure 4(b) ) .  Like the supercurrent at zero voltage this DC super- 
current can have a range of values, depending on the phase $0. Thus the I-V charac- 
teristic should now have ‘spikes’ of zero slope-resistance at all of these voltages. The 
size of the spikes is given by the corresponding Bessel functions and oscillates with the 
magnitude of the AC excitation; the original zero-order spike also oscillates. At very 
large microwave powers the Ressel functions all tend to zero and all the supercurrent 
behaviour is suppressed. 

5.1.4. The quantum-interference eflect. If two junctions are connected in parallel by 
superconducting leads then, as we shall show in detail in $6, it follows from (5.1) that 

+E = +A -t- +iwr (5.5) 
where 4~ and +B are the phase differences at the two junctions and +M is a magnetic 
phase difference equal to 2n@/@o, @ being the magnetic flux threading the loop which 
connects the two junctions and <Do the flux quantum h/2e. The total supercurrent 
passing through the joint system is equal to 

Is = I I A  sin +A + IIB sin (+A + +M). (5.6) 
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This formula is analogous to the expression for the wave amplitude produced by the 
two slits in a Young’s interference experiment, with C$M playing the role of the path 
phase difference. It follows that the critical current of the combination varies in the 
same way with magnetic flux as does the amplitude of the Young’s slit dazraction pattern 
with position. The idea can be extended to explain the effect of magnetic fields on single 
junctions. The effect is perhaps the most beautiful and direct demonstration of the 
wave nature of electrons yet devised. It is also the basis of several of the most useful 
devices which employ the Josephson effect (see $10). 

5.1.5. The self-field effect. When we have a large junction the currents flowing in it 
may themselves generate fields which induce serious quantum interference. As we 
shall see in $6.5 this ensures that in a large junction the currents are limited to strips at 
the edges of the junction having a characteristic width (the Josephson penetration 
depth) which is typically a fraction of a millimetre. 

5.1.6. The plasma resonance. If a small tunnel junction is on open circuit, current 
flowing across the junction can enter the capacitance C of the junction. On differenti- 
ating ( 5 . 2 )  with respect to time and ignoring normal currents we find that 

or 

for small displacements. Thus the junction has a natural oscillation frequency which is 
analogous to a plasma resonance. On inserting appropriate values for 11 and C one 
finds that the resonant frequency is typically 109 Hz. The resonance is, of course, 
damped by the normal current ($7.7). 

Apart from these effects, the original letter also commented on or carried implica- 
tions for three questions which arise when we try to improve on (5.3). 

5.1.7. The Riedel peak. We have already pointed out that 11 varies with voltage and 
has a maximum when e V  = 2A, that is, when the Josephson frequency is equal to twice 
the gap frequency. This idea was developed later by Riedel (1964) and Werthamer 
(1969) (see $8.1). 

5.1.8. The quasiparticle interference current. Josephson’s prediction (4.14) shows 
that there is a phase-dependent contribution to the real quasiparticle current (the 
Josephson cos + term: see $8.2). 

5.1.9. Proximity-effect weak 1ink.s. Josephson pointed out that effects similar to what 
he had predicted for SIS junctions would be expected in SNS junctions also (see $9.4). 

We shall now examine some of the early confirmations of these predictions. 

5.2. Early observations of the Josephson effects 
5.2.1. Observation of the DC Josephson effect by Anderson and Rowel1 (1963). I t  is 
certain that many experimenters must have seen the Josephson effect in tunnel junc- 
tions without realizing what they were seeing: anyone who finds supercurrent flowing 
across a thin oxide layer is very likely to conclude that he has a pinhole in the oxide and 
a superconducting short-circuit. It must also be noted that Meissner was convinced 
that he and his students had seen supercurrents flowing through insulators some years 
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before the effect was theoretically predicted and generally accepted (Dietrich 1952, 
Meissner 1960)t. But such observations were treated with some scepticism by many 
physicists and their significance was not understood. Once Josephson had made his 
prediction, the climate was changed, and within a year Anderson and Rowell (1963) 
had published observations which established the existence of the DC effect (the flow of 
DC supercurrent across a tunnel barrier). They started with two substantial advantages. 
Anderson had discussed the theory with Josephson, was convinced by it, and knew 
what to look for experimentally, while Rowell was very experienced in making reliable 
tunnel junctions. They knew before they started that it was essential both to use low- 
resistance junctions, so that electrical noise would not blurr the phase, and to screen the 
Earth’s magnetic field, since even one flux quantum in the junction was enough to 
remove the effect. Their arguments that the supercurrent which they quickly saw was 
indeed a Josephson current and not due to pinholes were: 

(i) The  effect was destroyed by quantum interference in a field of a few gauss, as 
expected. 

(ii) The critical current density was within a factor of ten of the maximum current 
predicted by Josephson. 

(iii) They calculated that a pinhole having the necessary critical current (the 
alternative explanation) would have a readily measurable conductance when normal, 
which was not observed. 

(iv) The  critical currents were reproducible and could not be ‘burnt out’ without 
destroying the complete junction (in contrast to the behaviour of pinhole contacts 
commonly observed in thicker oxide layers). 

5.2.2. Observation of the inverse AC effect by Shapiro (2963). Once Anderson had made 
clear the importance of working with low-resistance junctions, the field was open and 
many observations of the Josephson effect in tunnel junctions followed rapidly. The 
first to observe the effect of applying microwaves to a junction was Shapiro (1963). The 
junctions were AL-Al203-Sn tunnel junctions of small area and resistance between 
5 !2 and 20 Q, and they were mounted in a cavity resonant at 9.3 GHz and at 244 GHz. 
He saw extra current spikes at the voltages predicted by Josephson when a few mW of 
microwave power was applied to the junction. He confirmed that the magnitude of the 
spikes oscillated with microwave power as expected, and that at a suitable power level 
the original supercurrent at zero voltage was completely suppressed. At high powers 
the I-V characteristic appeared normal. 

5.2.3. Obsmvation of quantum interference in single junctions by Rowell (1963). Almost 
simultaneously, Rowell (1963) published an extension of his first observations, with 
two important developments. The first was that he succeeded in making junctions in 
which the critical current density was within a factor of two of the theoretical maximum 
predicted by Josephson. The second was the demonstration of the quantum-inter- 
ference effect. We shall see in $6.4 that in a junction containing a uniform magnetic 
field the critical current as a function of magnetic field parallel to one of its edges 
should be identical with the familiar diffraction pattern of a slit, of the form 
sin (B/Bo)(Bo/B), where nBo is the field which introduces one flux quantum into the 
junction. Rowell’s results are shown in figure 5 .  Considering the difficulty of fabricat- 
ing perfectly uniform junctions, the agreement with the expected diffraction pattern is 

$ Meissner and Smith et al (1961) had also observed that supercurrent could cross thin 
layers of normal metal. 
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good (note the vertical logarithmic scale); the position of the zeros also agreed exactly 
with the value of Bo calculated from the flux quantum and dimensions of the junction. 

Rowell’s and Shapiro’s results between them confirmed the essential features of 
Josephson’s prediction-that the supercurrent is periodic in 4 and that the space 

-10 0 10 20 B I G )  

Figure 5. Quantum interference in a single junction. (a) First results of Rowel1 (1963). 
(b)  Showing quality of agreement with theory in a very good sample (Matisoo 
1969a). 

dependence and time dependence of (b were connected with the magnetic potential 
and the chemical potential as expected for an effective pair wavefunction. They swept 
away most of the remaining doubts about the validity of Josephson’s prediction and 
began a burst of experimental activity which still continues. 

5.2.4. Observation of the AC effect by Yanson et a1 (1965) and by Giaever (1965). The 
direct AC effect-the generation of very-high-frequency supercurrents when a fixed 
voltage is applied to a weak link-was not observed so soon. The reason is easy to 
understand. When a fixed DC voltage is applied, the weak link behaves roughly as an AC 
current source of amplitude 11 in parallel with its normal resistance R. Josephson’s 
theory shows that the upper limit on the product 11R is &rA/e  which is typically about 
1 mV. At optimum coupling the power available is *RI12. If we take 0.5 SZ as the 
lowest resistance of available junctions small enough to avoid self-field effects the 
maximum power available would be about 10-7 W. In  practice, however, the product 
I1R is often an order of magnitude smaller than Josephson’s maximum and, more 
importantly, it is extremely difficult to match simultaneowly the large capacitance (of 
the order of 10-9 F) and small resistance of the typical junction to a conventional 
microwave circuit. If no matching is attempted the effect is typically to make the 
microwave power available of the order of 10-14-10-16 W. Not surprisingly, it proved 
difficult to detect power levels of this order. 

The first published detection of the effect was by Yanson et aZ(1965) who simply 
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placed a junction in a resonant cavity without any elaborate precautions to optimize the 
coupling. They detected output from the cavity of about 10-14 W at the Josephson 
frequency. 

At almost the same time Giaever (1965) published results obtained differently. He 
removed the matching difficulty by using as detector a second tunnel junction lying 
immediately above the generating junction, with the leads so arranged that there was 
strong microwave coupling between the two. His generator junction also had very low 
resistance and a critical current reasonably near the Josephson limit. The microwave 
field was detected in the second junction both by the appearance of photon-assisted 
conventional tunnelling and (when the second junction was made thin enough to 
exhibit Josephson effects) by the appearance of the inverse AC effect in the detector. 
The power detected was reasonably near the theoretical maximum. 

5.2.5. Other observations. The predicted temperature and gap dependence of the criti- 
cal current in tunnel junctions was confirmed experimentally by Fiske (1964, figure 
l(f)). A number of other important observations will be discussed in more detail later. 
The first observation of quantum interference in an external loop by Mercereau and his 
group in early 1964 (Jaklevic et al 1964a) is discussed in $6.2. Large junction effects 
and the ‘Fiske steps’ due to internal resonances in large junctions first reported at the 
Colgate Conference in 1963 (Coon and Fiske 1965) appear in $7.11. The first investi- 
gations of microbridges by Dayem (Anderson and Dayem 1964), point contacts 
(Levinstein and Kunzler 1966) and SNS junctions (Clarke 1969) are discussed in $9, as 
are the first reported observations of Josephson effects in superfluid helium (Richards 
and Anderson 1965). The plasma resonance was first investigated by Dahm et aE 
(1968, see 97.7). The Riedel peak was first measured experimentally by Hamilton and 
Shapiro (1971, see $8.3) and the quasiparticle interference current by Pedersen et al 
(1972, see $8.2). Thus all of Josephson’s original predictions have been examined 
experimentally. 

6. Quantum interference 

In  this section we shall discuss quantum interference as it applies to the equili- 
brium states and critical currents of Josephson devices in various configurations. 
What happens when the critical current is exceeded is dealt with in the following 
section and useful devices based on quantum interference are discussed in $10. 

6.1. The connection between magnetic JEux and superconducting phase 
The fundamental connection between flux and phase arises as a direct consequence 

of (5.1). We imagine two bulk superconductors which at two or more points are 
brought into close contact so as to form weak links (figure 6(a)). Let the phase differ- 
ence across the first link be $0; we use this as a reference phase. Then it is easy to show 
that the phase 4 at the second contact is given by 

where the ‘magnetic phase difference’ 4~ is just 2 7  times the number of flux quanta in 
the loop. The proof is as follows. The downward magnetic flux in the loop is given by 
the line integral 

4 = 4 0  4- 4M (6.1) 

a= $A.&. (6.2) 
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We may break up the path of the integral into four parts. For the path involving the 
first junction equation (5.1) shows that the contribution is (R/2e)( 8, - 8,. - +o), and 
similarly for the second junction we have a contribution (h/2e)( 82 - 83 + +). For the 

Id )  K l  X I  

2n 

I ‘ b )  

Figure 6 .  Quantum interference. (a), (b)  Two small junctions in parallel and corresponding 
phase diagram (see 56.2). The positive direction of flux is into the paper. (c) Uni- 
form junction of finite size in external field B (see $6.4). (d) Self-field effects in large 
uniform junction (see 96.5). (e),  (f) Single junction in superconducting loop and 
corresponding plot of junction phase against applied phase (see 96.6). 

paths in the bulk we appeal to the fact that supercurrents only penetrate a very short 
depth below the surface of a superconductor so that the supercurrent on the bulk 
paths may be taken to be zero. Then using ( 2 . 7 )  we find that their contributions are 
( R / 2 e ) ( 4 -  0,) and (A/2e)(&- 04). On adding the four contributions, equation (6.1) 
follows. 

If the superconductors are so thin that the supercurrent on the bulk path cannot be 
taken to be zero, then 9, must be replaced in (6.1) by London’s ‘fluxoid’, defined as 

CD’ = $ ( A  +A&,) dl. (6 * 3) 
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6.2. Two small junctions in parallel 

two weak links is given by 
If we take the configuration just discussed, then the total supercurrent through the 

where 1 1 ~  and 1 1 ~  are the corresponding critical currents. We may plot these super- 
currents on a phase diagram (figure 6(b)) and we see that the problem of finding the 
critical current of the joint system is mathematically identical to the problem of finding 
the resultant amplitude in a Young’s slit experiment. Each weak link contributes a 
supercurrent given by the projection onto the vertical axis of the corresponding vector 
in the phase diagram. The phase difference $&I corresponds to the path difference in 
the Young’s slit experiment and fixes the magnitude of the resultant vector, 11~. In  
the optical case, the resultant is rotating and its magnitude gives the amplitude of the 
corresponding wave after interference. I n  the case of quantum interference $0 is a 
constant which we are free to vary. By varying $0 we can make the projection on the 
vertical lie between I ~ R  and -11~; clearly, I;R gives the amplitude of the critical 
current of the joint system. The  joint critical current will oscillate with the flux in the 
loop in the same way as the amplitude oscillates with the path phase difference in a 
Young’s slit experiment. 

This effect was first observed in double junctions by Mercereau and his collabora- 
tors (Jaklevic et al1964a) and is commonly known as the Mercereau effect. The fact 
that the critical current is a periodic function of the applied flux makes the device a 
very useful and sensitive flux detector and this principle is applied in the device known 
as the DC SQUID (see $10.1). 

6.3. The Bohm-Mercereau experiment 

The argument of $6.1 which connects phase and flux shows a novel feature. The  
phase shift is a function of the flux within the loop, which may be present (if suitably 
screened) without any of the electrons experiencing the magnetic field directly. It is as 
though we are forced in this instance either to recognize the physical reality of the A 
field (which is normally regarded as an abstraction of no physical significance) or to 
accept the idea of direct action at a distance of the B field on the electrons. This idea is 
not however special to superconductivity, nor is it new. In  1949 Ehrenberg and Siday 
had pointed out that similar considerations apply to interfering electron beams 
in vacuo and Aharonov and Bohm (1959) emphasized the paradoxical nature of the 
conclusion. In  1960 Chambers had used a Young’s slit arrangement in an electron 
microscope to demonstrate the shift of the interference pattern produced by a mag- 
netized iron whisker placed between the interfering beams and having a very small 
stray field. The  analogous experiment for superconductors was first reported by 
Jaklevic et al (1964b). They examined the critical current of a double bridge as a 
function of the enclosed flux generated in the loop by a very small, long solenoid having 
a negligible stray field and they found the usual variation of critical current with flux. 

6.4. Quantum interference in a single junction in an appliedFeld 

If we have a single junction of uniform thickness in a strong external field B parallel 
to the plane of the junction, then the junction itself may contain an appreciable mag- 
netic flux (figure 6(c)). In  fact, the flux up to distance X from the boundary will be 
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equal to B(t + A1 + X2)X where t + A 1  + A2 is the ‘magnetic thickness’, equal to the 
thickness of the oxide plus the two magnetic penetration depths. Then the argument 
used above shows that at this point 

# ( X )  = 40 + [2rB( t  + hi + X2)/@0]X 

where k is proportional to the applied field B. If the Josephson current density per 
unit length at point X is J l ( X ) ,  the total supercurrent carried will be 

=#o+kX ( 6 . 5 )  

IS = j$ J l ( X )  sin ( k X +  $0) dX. (6  * 6 )  
This is a Fourier transform analogous to the transform which appears in Fraunhofer 
diffraction in optics. J l ( X )  plays the role of the transmission coefficient. If J1 is 
constant, the critical supercurrent as a function of magnetic field will be identical with the 
diflraction pattern of a slit of jinite width as a function of angle. 

We have already seen that this prediction was confirmed by Rowel1 in 1963 for a 
tunnel junction (figure 5). The effect has also been confirmed in small SNS junctions 
(Clarke 1969). Both tunnel junctions and SNS junctions are very sensitive to small 
magnetic fields. In the smaller devices such as bridges and point contacts the effect 
requires larger fields and the more complicated geometry usually makes it less easy to 
interpret. 

6.5. Self-field limiting a n d j u x  lines in large junctions 

We have so far treated the magnetic field as being equal to the applied field, 
ignoring the screening effect of the currents flowing in the junction. T o  allow for this 
effect, refer to figure 6(d) ,  which shows the edge of a large junction carrying current 
from bottom to top. The current enters the junction as a surface current of density KO 
per unit length flowing within the bulk penetration depth A. It then crosses the 
junction with a density J ( X )  per unit area (given by the Josephson equations) and 
finally leaves the junction again as a surface current. Note first that it follows from 
Ampke’s rule and the fact that the magnetic field is zero inside the superconductor that 
the magnetic field inside the junction points upward normal to the plane of the 
diagram and that B ( X )  = poK(X) (and that similarly the field Bo at the edge of the 
function is equal to p&o). 

We then easily derive the following equations for the magnetic phase as a function 
of position: 

- - - (2ed /h )B(X)  = - (2edpo/A)K(X) ax 
so 

a2# = (2edpo/h)J(X)  
ax2 

or 

where the length XJ is equal to (fi/2epodJ1)1/2, d being the magnetic thickness of the 
junction, t + A1 + X 2 ,  The significance of this result was first noted by Anderson and 
analysed in detail by Ferrell and Prange (1963). Equation ( 6 . 7 )  is a nonlinear screening 
equation and shows that #, and hence B, decays to zero inside the junction over a 
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length of the order of AJ, which is known as theJosephsonpenetration depth. For typical 
tunnel junctions XJ is of the order of 1 mm, and for typical SNS junctions it is an order 
of magnitude smaller. Thus only rather small junctions can be assumed to contain a 
constant field and to have the same value of 4 at all points. 

I n  a wide junction the solutions of this equation are both complicated and fascinat- 
ing. Their general nature can be visualized by noting that ( 6 . 7 )  is also the equation 

l o  I 

f h l  

f il 

Figure 7. Mechanical analogue for self-field effect seen from above. (a), (b)  Field and current 
screened from interior. (c) Flux line. (d),  (e )  Similar and opposed flux line pairs. 
(f), (g) Stationary flux in junction showing upper and lower critical fields. (h),  (i), 
( j )  Three stages in motion of flux lines from left to right (after Waldram et al 1970; 
see $6.5). 
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obeyed by a continuous line of identical pendulums hanging from a torsion wire. In 
this analogue, $(X) is the angle from the vertical of the pendulum at position X, the 
magnetic field is the couple in the torsion wire, and the supercurrent density is the 
projection of the pendulum onto the horizontal plane (figure 7). Analytic solutions of 
(6.7) can be written down in the form 

FE+(..- $)\a] = & t(x- XO)( @/ax)max (6 * 8) 
where F is an elliptic integral of the first kind and sin 01 = 2(h J a$/ dXmax)-’. These 
solutions have been extensively analysed by Owen and Scalapino (1967) and others. 
Some important features are as follows. 

(i) For a junction in zero applied field the critical current increases with width but 
saturates at a value of 4 J 1 h ~  when the width exceeds about 5hJ (‘self-field limiting’). 

(ii) The dependence of the total current on the phase at the edge of the junction is 
no longer given by the Josephson relation. In  the limit of a very wide junction the 
current carried at one edge is equal to 2JlhJsin(+$) and the junction becomes 
internally unstable when 4 exceeds r. 

(iii) A wide junction can contain a set offlux lines, which are analogous to the flux 
lines in bulk type I1 superconductors and correspond to twists in the line of pendulums 
(figure 7(c)). Flux lines contain exactly one flux quantum. Flux lines of the same sign 
repel each other and flux lines of opposite signs attract and may annihilate each other. 

(iv) The plot of critical current as a function of applied field for a wide junction has 
overlapping branches corresponding to different numbers of flux lines in the junction 
(figure 8) and, although reminiscent of the small junction behaviour (figure 5 ) ,  is quite 
different in detail. 

(v) As in bulk type I1 superconductors, there is a lower critical field for the entry of 
flux lines into the barrier. For a wide barrier the thermodynamic critical field is equal 
to (4 / r )b lh~ .  There is, however, as in bulk type I1 behaviour, a surface barrier and 

Figure 8. Critical current of a wide symmetrical junction as a function of applied field. (a) One- 
dimensional calculation for L = l O h j  (Owen and Scalapino 1967). (b) Experimental 
results for tunnel junction with L -6/\j (Matisoo 1969a; the axes are tilted because 
the ground plane used makes the junction asymmetric). (c )  Results for a square SNS 
junction with L = 8*5Aj (Clarke 1969). 
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hysteresis : the barrier only becomes unstable in an external field of 2J1X J, and once the 
flux has entered it only leaves the barrier when the external field is reduced to zero. 
There is no upper critical field of the barrier itself, which remains superconducting 
until the superconductors surrounding the barrier are themselves driven normal by the 
applied field. 

In comparing these predictions with experiment (figure S), two important points 
must be borne in mind. Firstly, although there is no difficulty in principle in extending 
the calculation to two dimensions, all the results referred to are for a one-dimensional 
analysis. Most experiments, however, have been performed on junctions in which 4 
varies in more than one direction and thus can only be expected to fit the predictions 
qualitatively. A genuine one-dimensional arrangement requires the use of a ground 
plane. Secondly, it must be remembered that the behaviour of the two-dimensional 
junction still depends on the boundary conditions at both edges and precautions must 
be taken to ensure that they are properly controlled. Experiments in which attention 
was given to these considerations include the work of Matisoo (1969a) on tunnel 
junctions and, very recently, that of Lumley (1974) on SNS junctions, who measured the 
current-phase relation and the I-Y characteristic as well as the critical current. Both 
authors found rather good agreement with the theory just described. 

The motion of flux lines and its effect on the I-V characteristics of large junctions 
are discussed in $7. 

6.6. Single junction in a superconducting loop 

We complete this section by considering the self-field effects for a single small 
junction inserted into a superconducting loop (figure 6(e)). This is equivalent to short- 
circuiting the first junction in figure 6(a), and we see from (6 .1 )  that there is now a 
direct connection between the phase 4 at the remaining junction and the total flux @ in 
the loop, 4 = 2.ir@/@o. It is interesting to enquire what happens if a current 11 enters 
the system from the right. If I1 divides, Is passing through the junction and I ,  
circulating around the loop, then if we allow both for the externally applied flux @E and 
for the flux generated by IC we have 

(6.9) 

On substituting for IC as I1 -1s we obtain the relation 

4 + (2.irLl1/@0) sin 4 = (2rr/@0)(@~ +HI) = 4~ (6.10) 
which is plotted in figure 6(f). This plot gives the actual phase 4 across the junction in 
terms of the applied phase +A, the phase which would have been present if the junction 
carried no current. The following points should be noted (Silver and Zimmerman 
1967, Kurkijarvi 1972). 

(i) If 27rL11<@0 the slope of the plot is always positive and there is just one 
solution for 4 at a given applied phase $A. This solution is always stable. Note that 
values of 4 between +.ir and PT, which would be unstable in an isolated junction driven 
by a source of any impedance, are now stable. 

for which three or more solutions 
exist, such as A, B and C in the figure. The solutions such as B on negative-slope 
regions are unstable. The system now shows hysteresis: if it starts in state A and $A is 
increased it will eventually be forced to jump to the C branch, and if it starts in C and 

(ii) For larger values of ,511 there are values of 
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4~ is reduced it must jump back to the A branch. If the free energy is calculated, then 
the states nearest the line $ = + A  are found to be the most stable. Other stable states 
represent situations in which flux is trapped in the loop. 

(iii) When it is small 4 is approximately equal to (6~(1+2~LI1/@0)-1 so that if 
LIls@o then 4 is much smaller than +A. This just represents the fact that if ,511 is 
large applied changes in flux are effectively screened from inside the loop. 

We shall see later that this case has important applications in the device known as 
the RF SQUID ($10.2) and in the measurement of current-phase relations ($9.7). 

7. Time-dependent effects for the shunted-junction model 
7.1. Use of current sources and the RSJ model 

When we discussed the AC effect and the inverse AC effect in $5.1 we assumed that 
the signals were applied to the junctions using voltage sources. But since most 
Josephson devices have low impedances and are frequently fed from high-impedance 
microwave sources it is often more instructive to consider the case of current-source 
input. In  this situation any input current which is not transmitted as supercurrent 
must be forced through the device as normal current, thus determining the voltage 
and hence the rate of change of phase across the junction. Thus, for the first time in 
this review, we find a situation where the nature of the normal current is important in 
determining the supercurrent, In  this section we shall assume that the normal current 
can be described using a simple parallel resistance as in the RSJ model represented by 
equation ( 5 . 3 )  of $5.1. This is, of course, an approximation, but it contains the 
essential physics for most effects of interest up to the gap frequency. It appears to be a 
rather good approximation for certain weak links such as microbridges and SNS 
junctions, though not so good (as we have seen) for tunnel junctions. The extent to 
which the model is valid is discussed for tunnel junctions in $8.1 and for other weak 
links in $9. The shunt resistance can usually be assumed to be roughly equal to the 
normal state resistance of the device. 

We shall examine below the time-dependent behaviour of the RSJ model in various 
situations, normally using a current source. As we shall see, the use of a current source 
leads to strongly nonlinear differential equations and behaviour that are often qualitative- 
ly different from what are expected for avoltage source. This nonlinearity makes analytic 
solution difficult, but it also frequently leads to a fascinating richness of solutions. 

7.2. Reduced variables 
If a current I ( t )  is applied to a small junction of critical current I1 we find on com- 

bining the Josephson relations ( 5 . 2 )  and (5.3) the nonlinear equation of motion for 4 
Arb 

~ = I ( t )  - 11 sin (6 
2eR 

which in terms of the reduced parameters shown in table 1 takes the form 

4 = i ( T )  - sin (6. (7.2) 

7.3. Constant current applied to a small junction of negligible capacitance 
In  this case i(7) is a constant, io. The general nature of the solutions can be under- 

stood by noting that (7.2) is now the same equation as that of a particle moving under 
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Table 1. Reduced parameters for calculation using the RSJ model 

Reduced current 
Reduced current density 
Reduced time 
Reduced frequency 
Reduced voltage 
Reduced capacitance 
Reduced distance 
Reduced velocity 

gravity in a viscous medium on a sloping washboard (figure 9). For /io/< 1 (applied 
current less than critical current) 4 settles rapidly to a constant, stable value in the 
range - &T < 4 < Br. For ]io1 > 1 there is no static solution and the phase slips. The rate 
of slippage is greatest when 4 = - i n ,  and smallest when 4 = +r. Consequently the 

9 

Figure 9. The washboard analogue. The tilt corresponds to the DC current injected. For the 
RSJ model the particle has weight but no inertia (97.3). For a capacitative junction 
the particle has inertia (47.4). Oscillations around the minimum for l o  < 11 corre- 
spond to the plasma oscillation (97.7). Electrical noise is equivalent to Brownian 
motion (97.9). 

phase increases unsteadily, and this means that the supercurrent at finite voltage is not a 
purely sinusoidal function of time: it has a DC component and also components at all 
multiples of the Josephson frequency. The equation can be solved analytically and the 
phase is given as a function of time by the relation 

io tan (84) = 1 + 710 tan [avo(. - TO)] (7 .3)  
where 210 = (io2 - l ) l /2 .  Clearly 4 increases by 2 r  when 2107 does the same, so that 00 is 
the reduced frequency of a periodic variation of 4. The mean value of 4 which is also 
the mean reduced voltage is thus given by 4 = z, = uo (figure 10(a)) ; note that, unlike the 
situation with a voltage source, the DC voltage increases monotonically once the critical 
current is exceeded and no hysteresis is expected. The full expression €or the voltage is 
(Aslamazov and Larkin 1968) 

where we have chosen the time origin so that $ is a minimum and 4 = +r at t = 0. This 
expression can be expanded in harmonics of the Josephson frequency as follows (Fack 
and Kose 1971) : 

V ( T )  = VO[ l  -k 2 ( - zio - io)-” COS (nZJoT)]. ( 7 . 5 )  
11 
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Figure 10. Predicted I-P characteristics. (a) RSJ model fed with constant current, showing also 
the currents flowing in the shunt resistor at harmonics of the Josephson frequency 
(97.3). (b)  Same as for (a), with noise rounding, where y=I&/ekT  (Aslamazov and 
Larkin 1968; 97.9). (c) RSJ model with shunt capacitance, where c is reduced 
capacity (McCumber 1968; 97.4). (d)  RSJ model with parallel inductance and 
voltage source, where /3 =R/( wcL) (McCumber 1968 ; 97.5). 

Thus we see that a junction to which a constant current is applied is expected to act as a 
voltage generator at all multiples of the Josephson frequency. A DC I-V characteristic 
of the type predicted has been observed in weak links of several types (see figures 11 
and 13). The high-frequency voltages generated are important in microwave devices 
(411). 

7.4. The effect of capacitance on the I-V curve for small junctions 

tunnel junctions, then 

and the reduced equation of motion for a constant input current takes the form 

If a Josephson device has appreciable capacitance, as is commonly the case for 

I ( t )  = I1 sin 4 + V/R + VC (7.6) 

c$++=io-sin 4 (7.7) 
where c is the reduced capacitance (see table 1). The general nature of the solutions of 
this equation can be understood by noting that a massive particle sliding through a vis- 
cous liquid down a sloping washboard under gravity has the same equation of motion 
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(figure 9). For io > 1 the particle will settle down to a steady average rate of slide as 
before. On the other hand, for io < 1 two types of solution may be possible. There is a 
static solution in which the particle is at rest at a minimum of the potential (zero- 
voltage supercurrent) and a dynamic solution in which the particle has a steady average 
rate of slide, using its inertia to punch through the potential minima (finite voltage). 
Thus we expect to see hysteretic behaviour as io is varied and this is confirmed by the 
computed I-V curves shown in figure lO(c) (McCumber 1968, Stewart 1968). Notice 
that the effect of the capacitance should become noticeable for c 2 1. For c 3 20 the 
predicted characteristic is similar to that for a DC voltage source; this is readily under- 
standable when we reflect that the large capacitance has the effect of absorbing the AC 
supercurrents generated by the device and hence making negligible all the AC com- 
ponents of voltage. 

Experimental checks have shown fair confirmation of this prediction in tunnel 
junctions, which have relatively large values of C (Scott 1970, for instance). However, 
as McDonald et a1 (1976) have pointed out, in good tunnel junctions the Josephson 
frequencies involved are near the gap frequency and the RSJ model is probably inade- 
quate. We discuss their improved calculation in $8.1 ; it is not yet clear whether the 
experimental data for tunnel junctions lie nearer to their predictions or to those just 
discussed. Most other types of device have small values of C and do not show interest- 
ing effects due to capacitance. 

7.5. The effect of series inductance on small junctions 

The effect of series inductance for a voltage source has also been calculated 
(McCumber 1968) and is rather similar to the effect of parallel capacitance for a current 
source (figure 10(d)). We note that a large inductance smooths the current and makes 
the system behave as though it were current-source driven. The effects of series 
inductance may be significant in determining the observed I-V characteristics of high- 
resistance point contacts, which sometimes do have forms similar to those of figure 
10(d). 

7.6. Small-signal inductance of a junction at zero voltage 

biased within the zero-voltage step) we have 
For small departures from a constant value of $ (which implies that the junction is 

ars/ at = I~ COS 4 
= (2el; cos $o/A)V. (7 8) 

Thus the small changes of supercurrent behave as though they were passing through 
an inductance L J = A/(ZeI; cos 40). This idea is useful in discussing the RF properties of 
the device. The effective inductance is in parallel with the capacitance and shunt 
resistance. 

7.7. The plasma resonance in small junctions 

If we return to the solutions of (7.7) for io < 1, we see that if the system is slightly 
disturbed from equilibrium the phase will undergo damped oscillations given by the 
equation 

car$ + sd + cos $OS$ = 0 (7 * 9) 
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(corresponding to oscillations of the particle around the potential minimum on the 
sloping washboard shown in figure 9). If c is large these oscillations are lightly damped 
and we notice that their reduced frequency varies with the equilibrium value of $ 
according to the relation 

(7.10) 

In  non-reduced variables the frequency up is just equal to ( L J C ) - ~ / ~ ,  as one would 
expect for the equivalent circuit for small signals mentioned in the previous section. 
Detecting this plasma oscillation is not very easy because the small excursions of $ 
correspond to very small currents and because the junction is not easily matched to 
external circuits. The first observation was by Dahm et aZ(1968), who checked the 
effect in Sn-SnO-Sn junctions by sweeping Io in the presence of a small microwave 
signal at 4.75 GHz and detected the resonance in the second-harmonic output 
generated by the nonlinearity of the junction itself; the detected power was 10-17-10-18 
W. They found good agreement with the above formula for the frequency of the 
resonance after correction for the finite size of their junctions. Later measurements of 
the Q of the resonance by the same group, however, showed that the damping term 
was not constant as (7.9) would predict but also varied with $0. We shall discuss the 
significance of these later results in $8.2. 

7.8. The effect of high-jrequency input on small junctions 

For a junction of negligible capacitance fed with a current having both DC and RF 
components of the form I ( t )  = Io +Is cos (cost) the reduced equation of motion (7.2) 
takes the form 

4 = io + is cos (us7) - sin 4. (7.11) 

This equation has not been solved analytically but has been extensively studied by 
digital and analogue computation (Russer 1972) and by perturbation theory (see Thomp- 
son 1973). The  following features of the solution are worth noting. 

(i) The  mean value of 4 (the DC voltage) has a tendency to stick or lock-on at the 
multiples of the applied frequency, nus. In  other words, B remains constant for a finite 
range of values of DC current io whenever d=nus, corresponding to a set of vertical 
regions in the low-frequency I-V characteristic (figure 1 l(a)). Within these regions the 
supercurrent is phase-locked to the RF input. (What happens within such a region is 
that if, for instance, d is slightly greater than nus, the phase of 4 will gradually increase 
compared to the phase of the excitation. This changes the relative phases of the second 
and third terms of (7.11) in such a way that the effect of the third term is enhanced, 
which in turn reduces B until d = nus. Thus if io is suddenly increased by a small amount, 
d will at first increase, but the phase-locking mechanism just described will then bring 
d back to nvs.) 

(ii) These steps in the I-V curve correspond to the spikes in the I-V curve for the 
voltage-fed device which we discussed in $5.1. The correspondence can be seen most 
easily in the limit of high excitation frequency where us% 1, if we choose i s z v s  and 
examine the range of io near nus where a step is expected. Under these circumstances 
the last term of (7.11) is small, and consequently we see by integration that 

(7.12) 
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Figure 11. 1-V characteristics for current-fed RSJ model with microwave excitation. (a) Pre- 
dicted characteristics labelled with values of excitation level .&/I1 (Russer 1972). 
(b) Theoretical variation of step height with excitation for w = 0 . 2 2 ~ ~  compared 
with data for small microbridges (Gregers-Hansen et a1 1971). 

where 8 4  has a slowly varying part combined with small and unimportant high- 
frequency terms. If we insert this form into (7.11) we find for the low-frequency part 
of 84 the equation 

Sd = Si0 - J-n(is/vs) sin 84 (7.13) 

where 8i0 = io - nus and J-n is a Bessel function. This equation in 84 is equivalent to 
equation (7.2) for an unexcited junction whose critical current is equal to I~lJ-~(is/u$\.  
It follows that the shape of the I-V curve near a step is, in this limit, identical with the 
shape of a zero-order step of the same height and that the half-step height is given as a 
function of excitation by the Bessel function. 

(iii) If, on the other hand, the reduced frequency is low, the steps interfere with 
one another in a complex way (figure l l (a) ) ,  and the variation in step height with 
excitation, though qualitatively similar, is no longer given by the Bessel function. 
Although the slope of the I-V curve between steps may be very small in this limit, it is 
never negative and hysteresis is not predicted. 

Extensive comparisons between analogue solutions of (7.11) and measured I-V 
curves for small microbridges irradiated with microwaves have been made by Gregers- 
Hansen et a1 (1971); the quality of the agreement obtained can be seen in figure l l (b) .  
It seems likely that, apart from the depression at small excitation discussed in $9.3, the 
residual disagreement is mainly due to the finite size of the bridge, which leads to a 
current-phase relationship which is not exactly sinusoidal. This, incidentally, can be 
shown to lead to subharmonic steps at the reduced voltages v = nvsjm where n and m 
are both integers, and such steps are indeed readily visible for the larger bridges. The  
possible effects of phase dependence of the normal current on I-V curves are discussed 
in $8.2. Similar I-V curves have been commonly observed in point contacts at micro- 
wave and higher frequencies, in Notarys-Mercereau bridges and, at lower frequencies, 
in SNS junctions (see $9). 

The use of a Josephson device as a mixer is discussed in $11.2. 
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7.9. The effect of noise voltages on I-V characteristics 

As we saw in $2.3, Josephson realized from the beginning that since an unbiased 
junction has a rather small free energy equal to AI1/2e, then once the thermal energy 
k T  exceeds this value its phase will start to wander and the Josephson effects will 
disappear. The details of this phase wandering may be discussed in the spirit of the 
RSJ model by adding a Johnson noise current source in parallel with the resistor in the 
RSJ model. This is equivalent to adding a noise source to the right-hand side of the 
reduced equation of motion (7.2), having a mean square value in range dw of reduced 
frequency given by 

(7.14) 

It was pointed out by Ambegaokar and Halperin (1969) in an elegant paper that if we 
return once again to the mechanical analogue of the particle on the tilted washboard, 
the additional term is just equivalent to thermal Brownian motion. The interpretation 
is then quite simple (figure 9(a)). The noise will mean that the particle, though pre- 
dominantly located near one of the potential minima, will occasionally have enough 
thermal energy to cross the potential barrier and will gradually drift downhill; the 
corresponding phase drift appears as a small finite voltage. This effect is particularly 
noticeable when the washboard tilt is so large that the minima have almost dis- 
appeared ( I  approaches 11). If, on the other hand, the free energy hl$e is much 
greater than AT, drifting is very unlikely and the supercurrent step will be extremely 
steep; this is, in fact, a typical thermally activated process and one can show that at 
zero bias the slope resistance will be of the order of R exp (- ny).  In  a typical junction 
this is of the order of R exp ( -  1000) at helium temperatures. A similar interpretation 
can be shown to apply to phase drift at a Josephson step induced by microwaves. It is 
this extreme steepness of the steps which makes relatively easy the measurement of 
step voltages from which the ratio e /h  can be accurately determined ($1 1.1). 

The predictions of noise rounding made by Ambegaokar and Halperin are shown in 
figure 10(b). The theoretical predictions have been quite precisely confirmed using 
external noise sources (Kanter and Vernon 1970a, b). The noise actually present in 
devices at low temperatures is discussed in 38.4. 

7.1 0. Time-dependent effects in large tunnel junctions 

T o  discuss time-dependent effects in large junctions we must combine (6,7), 
which shows how the phase varies with position, with (7.6), which gives the total 
current density for a capacitative junction. The result expressed in reduced variables 
is 

(7.15) 

which is a damped nonlinear wave equation. The constant uo (which we write as U0 in 
unreduced variables) is just the reduced waveguide velocity which the junction would 
have if no current flowed across it?. Because the magnetic field penetrates into the 
bounding superconductors U0 is decreased by a factor of [d/(d+ A1 + hz)]1/2 compared 
to the velocity of light; for a typical junction this factor is of the order of 0.1. The 

t The reduced velocity uo is equal to c-112 where c is the reduced capacitance. 
5 5  
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above equation is also the equation of motion of a line of pendulums rotating around a 
horizontal torsion wire with light damping and we shall use this physical analogue in 
trying to make clear some of the many complicated solutions which it possesses. (It has 
also been used to describe the motion of dislocations and has been explored as a basis 
for nonlinear quantum field theory. When the final damping term is absent it is some- 
times known as the sine-Gordon equation.) 

7.10.1. Movingjux line mode (see Lebwohl and Stephen 1967, Waldram et a1 1970). 
As a first approximation it is usual to ignore the final damping term in (7.15). I n  this 
case we note that if +(x) represents a stationary flux line or array of flux lines as discus- 
sed in $6.5 then +[(% i- u ~ ) / a ]  is a stable solution of the dynamic equation provided 
U < uo and a= (1 - u2/uo2)1/2. I n  other words, for every static solution there are corre- 
sponding dynamic solutions in which the flux pattern moves and the length scale suffers 
a ‘Lorenz contraction’ by the factor (1 - u2/u02)1/2. This conclusion ignores damping, 
however, and is rather misleading. It suggests that the density of flux lines in a moving 
array is uniform, as in a stationary array, whereas in fact in the presence of damping a 
density gradient is needed to drive the flux lines along (figure 7(h), (i) and ( j ) ) .  It may 
also be shown in the absence of damping that equal and opposite flux lines canpass 
through each other. This is equally misleading. Model experiments show that very little 
damping is needed to ensure that equal and opposite flux lines will annihilate one 
another when they meet. 

If a long junction is placed in a magneticFeld which exceeds the critical field, flux 
lines of the same sign enter from the edges and flow to the centre, where they come into 
equilibrium and form a static array. If, on the other hand, a DC current exceeding the 
critical current is applied to the junction, flux lines of opposite sign enter from the 
edges and flow to the centre where they are annihilated in a continuous flow. This 
flux flow, of course, implies that there is a DC voltage across the junction and this must 
be our model for understanding the I-V curve for a long junction. The  question of 
what I-V characteristic is to be expected has, however, never been clearly resolved. It 
involves very careful computation, since the average supercurrent depends critically 
on the details of the launching of the flux lines from the edges of the junction and of 
their annihilation at the centre. Arguments given by Waldram et a1 (1970) in discussing 
their theoretical calculations for SNS junctions apply also to large tunnel junctions and 
suggest that a substantial DC supercurrent may be expected to persist at large voltages. 
This is certainly what is observed for large tunnel junctions and large SNS junctions 
and indeed for many point contacts, too. The  I-V characteristic frequently looks as 
though an almost constant supercurrent has been added to the normal characteristic 
independent of the voltage applied. (In tunnel junctions the I-Vcurve is often compli- 
cated by the presence of other structures: see $7.11.) 

7.10.2. Transmission line modes. A second type of solution corresponds to the plasma 
oscillation in small junctions discussed in 97.7. In  its simplest form it can be regarded 
as the mode of small oscillation about the equilibrium state + = 0 (or, in the mechanical 
analogue, the waves of small oscillation of the line of pendulums about the vertical 
equilibrium position). As Josephson (1965) noted, if + is small and we omit the damp- 
ing term, (7.15) becomes 

(7.16) 
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which is now linear, This is a transmission line equation for the junction. Note that it 
has the dispersion relation, in non-reduced variables, 

U 2  = WF2 + co2k2 (7.17) 

which has a frequency cutoff similar to that for a waveguide (figure 12, curve A). If k = 0, 
the solution is exactly analogous to  the plasma oscillation in a small junction and indeed 
the observations of the plasma resonance by Dahm et aZ(1968) discussed in $7.7 were, 
in fact, made on quite large junctions. In  a sufficiently wide junction modes with 
higher k values fitted to the boundary conditions should also be observable. Although, 
as we shall see, related modes in a magnetic field have been observed, these expected 
transmission line modes in zero field do not seem to have been reported in the literature. 

Figure 12. Dispersion relations for modes of small excitation in tunnel junctions. Curve A, no 
flux in junction; curve B, in presence of flux lines at spacing 2.5A~ (after Lebwohl 
and Stephen 1967); curve C, in very high flux density. 

We can also ask what the modes of small oscillation about a stationary flux pattern 
are like (corresponding in the mechanical analogue to waves travelling along an already 
twisted line of pendulums). This question was discussed by Lebwohl and Stephen 
(1967), who actually obtained analytic solutions to the problem. Since we have a 
periodicity produced by the regular array of flux lines in the equation for small 
disturbances it is no surprise that the solutions have two branches with a frequency 
gap (figure 12, curve B). When the flux lines are well separated the two branches are 
easily interpreted. The  upper branch has a large amplitude between the flux lines and 
corresponds to the transmission line mode in the absence of flux just discussed. The  
lower branch only has appreciable amplitude near the flux lines and corresponds to 
various modes of oscillation of the flux line array. The  zero-frequency point on this 
branch corresponds to the uniform motion of the array discussed in the previous 
paragraph. The sharp peak observed by Pedersen et aZ(l972) in their observations of 
the plasma mode was evidently due to a geometrical resonance of the transmission line 
mode in the presence of a magnetic field. What happens to such modes in the presence 
of moving flux lines is discussed in $7.11, 

7.10.3. The pendulum mode. Josephson (1965) also pointed out that in the presence of 
light damping (7.15) has a mode in which C$ is almost independent of x (corresponding 
to all the pendulums moving as one). For small amplitudes, this is just the plasma 
oscillation but there is also a finite voltage mode (corresponding to continuously 
rotating pendulums). It seems likely that at high voltages the system may prefer this 
mode to one involving very closely spaced moving flux lines. This idea was used in a 
qualitative way by Scott and Johnson (1969) to explain their data on the I-V curves of 
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large tunnel junctions, which appeared to show a hysteretic jump from the ‘displaced 
linear branch’ characteristic of flux flow to a normal-state I-V characteristic at high 
voltages. 

7.1 1. Self-excited structure in large tunnel junctions 

Structure in the I-V curves of large Josephson junctions was first observed by Fiske 
(1964) and has been quite extensively investigated since. T o  understand what is hap- 
pening we must remember that at finite voltage there is a moving pattern of flux inside 
the junction. The  velocity of the flux pattern is known if the field and the voltage are 
known and is in fact equal to V[B(t+X1+AXz)]-l. Superimposed on this moving 
pattern will be modes of small oscillation similar to those for the fixed flux pattern 
discussed in the last section and including transmission line modes. The  dispersion 
relation for the transmission line modes in these Circumstances has not been calculated 
analytically, but if the flux density is high it will not be very different from that for a 
transmission line without leakage currents (figure 12, curve C) and the velocity of the 
transmission line modes will be close to CO. Under these circumstances two types of 
behaviour may be apparent. 

7.11.1. Broad peaks at voltages proportional to the jield. If the system is fairly heavily 
damped the boundary conditions on the transmission line mode are not very important 
and the main effect is a broad resonance which occurs when the flux pattern is moving 
at the same velocity as the transmission line mode. This produces a broad peak in the 
energy dissipation at a voltage proportional to the magnetic field in the junction. This 
behaviour has been seen and successfully analysed using perturbation theory by Eck 
et a1 (1964). 

7.1 1.2. Sharp steps at  $xed voltages. In  a more lightly damped system, the transmis- 
sion line has well defined geometrical modes whose frequencies depend on the width of 
the junction. These modes can act as cavities to which the flux flow frequency can 
become locked and this produces steps at the corresponding voltages (Coon and Fiske 
1965). If the magnetic field is varied, the step corresponding to the voltage at which the 
flux speed matches the transmission line speed is strongly enhanced (Langenberg et a1 
1966, Dmitrenko et aE 1965). Matisoo (1969b) has seen steps in zero applied field, 
which he attributes to the presence of inhomogeneities in the junction. However, since 
any junction showing a voltage must, in fact, contain flux it seems possible that the 
explanation of his steps is essentially similar to that given here. 

Blackburn et a1 (1971) have more recently reported detailed computations which fit 
the experiments of both types of behaviour reasonably well and better than the pertur- 
bation calculations do. For a discussion of the phase locking of Josephson junctions to 
an external cavity and possible applications, see the review by Richards et a1 (1973). 

7.12. Time-dependent efjrects in large SNS junctions 

In  SNS junctions, the capacitative term in (7.15) is absent and the damping term 
dominates the time dependence. The resulting equation corresponds to that for a line 
of pendulums rotating around a torsion wire in a very viscous medium. I n  this case 
there is no transmission line mode and the interesting questions concern the flux flow. 
The  equation was studied by Waldram et a1 (1970) and the following features of the 
results should be noted (figure 13). 
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I-V characteristics for a wide one-dimensional SNS junction. (a) Experiment 
(Lumley 1974) : curve A, L/hJ = 22; curve B, L/XJ = 15; curve C, L / h j  = 6.5 ; curve 
D, L / h ~ = 4 .  (b) Theory for unexcited junction (Waldram et al 1970): curve E, 
L / h ~ = 1 3 ;  curve F, L / h J = 8 ;  curve G, L / h ~ = 6 . 5 ;  curve H, L/hJ=4. LIXJ is 
varied by varying the temperature. (c) Experiment for the same junction with two 
levels of microwave excitation and L/hJ = 6.5. (d )  Corresponding theory. Slightly 
differing scales are used in the four diagrams. 

(i) Numerical calculation of the flux flow situation shows that for wide junctions 

(ii) In  the presence of AC excitation steps appear at submultiples as well as multiples 
the I-V curve shows a persistent supercurrent at large voltages. 

of the Josephson voltage. 

8. Further developments for tunnel junctions 

We have so far done scant justice to the details of Josephson’s original prediction 
for tunnel junctions (4.14)’ having worked with the RSJ model, which treats Il(V) and 
al( V )  as constants. In  this section we shall look in more detail at the full prediction 
and its extensions. 

8.1. Werthamer’s formulation of the tunnel current 
Josephson’s original calculation was limited to the case where the frequencies of the 

voltages across the junction are small compared to the gap frequency. The extension 
to the general case is fairly straightforward and was first performed by Werthamer 
(1966)’ using the method introduced by Ambegaokar and Baratoff (1963a, b). Wert- 
hamer’s result can be written ast  

I ( t )  = Im [exp ( - &i$(t)) j?- exp ($i+(t‘))jl(t - t’) dt’ , 
+exp (&+(t)) J4. exp (+i$(t’))jz(t-t’) dt’] (8.1) 

t Readers of the original paper should note that +(t)  is written by Werthamer as wot + a + 8&t) 
and that we have used the convolution theorem to convert his expression in terms of Fourier 
componentsj(w) into (8.1). We have written hisjl(w), j 2 ( w )  as - j i * ( w ) ,  - j2(u) to simplify the 
presentation. 
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where 4(t) is the phase across the junction at time t. The form of this result can be 
understood intuitively as follows. We saw in 94 that the tunnel Hamiltonian entered 
Josephson’s calculation of the current crossing a tunnel junction twice, once in calculat- 
ing the perturbed wavefunction and once in calculating the current carried by the 
perturbed wavefunction. The  effect of each of these aspects of the calculation is also 
apparent in Werthamer’s result: the phase factors in (8 .1 )  arise when the various 
operators in ( 4 . 4 )  are applied at a given time and we see that in each term the integral 
over earlier times t’ represents the cumulative effect of the perturbation, while the pre- 
factor arises in the subsequent calculation of the current at time t. The first term 
represents the normal terms in the current and the second the Josephson terms. The  
response functionsjl(t - t’) andjz(t - t’) show how the effect of the perturbation decays 
as the contributions of the various excited states created at time t’ lose phase coherence. 
The  functions are real. For normal metals j 2  is zero and j l  consists of a double 
6 function (differential operator) at t-t‘=0, so that in this case we simply have 
I(t).c~$(t)cc V(t). I n  superconductors the situation is, of course, more complicated and 
j l  andjz can be related to Josephson’s calculation as follows. If we have a constant 
voltage, or a voltage which changes only slightly in the gap time h/A, we may write 
+q3(t) as wt in Werthamer’s equation (8. l), where we follow his notation by writing 
Aw = eV, w being half the usual Josephson frequency. We then find that 

I (  V )  = Im j ” ( w )  -sin 4 Re 72(w) + cos 4 Im 72(w) (8 .2 )  
j”l(w) and j”z(w) being the Fourier transforms ofjl(t) andjz(t), which is just Josephson’s 
result. Im  71 is the ordinary tunnel current ao( V)V,  - Re 7 2  is Josephson’s I1( V )  and 
I m  3 2  is Josephson’s al( V)V. 

Werthamer’s formulation has the advantage that it can be used to calculate the 
tunnel current for the general case when the voltage may be varying rapidly. The  real 
and imaginary parts of 71(w) and j”2(w) as found by Werthamer at zero temperature are 
shown in figure 14(a) and it is worth noting the following points about his results. 

(i) The terms Im 71 and Im 7 2  are odd functions of. voltage and correspond to real 
energy-dissipating tunnelling of excitations. They are absent at T= 0 for voltages less 
than the gap voltage, 2A/e, as one would expect. At higher temperatures they con- 
tinue down to zero voltage, both with positive sign. The  linear resistive behaviour of 
Im F ~ ( w )  at high voltages corresponds to the presence of a double 6 function (differen- 
tial operator) at t=  0 in j l( t) ,  as in the normal metal. 

(ii) The terms Re 71 and Re 7 2  are even functions of voltage and correspond to 
virtual transitions dissipating no energy. They both peak at the gap voltage, showing 
that the response functions j,(t) and j*(t) oscillate at the gap frequency 2A/h. - Re 7 2  
can be regarded as the amplitude of the Josephson current. Its peak was first empha- 
sized by Riedel (1964) and we see that it occurs when the Josephson frequency is 
4A/h (twice the gap frequency) and then falls relatively slowly with frequency. We can 
therefore expect to see Josephson effects at frequencies well beyond the gap frequency 
(see 911.2). Re 7 1  has no physical effect at all when the applied voltage is constant (and 
therefore does not appear in Josephson’s original formula). It contains an arbitrary 
constant, since the addition to j , ( t)  of a 8 function at t = t’ has no effect on the current. 

(iii) When we are dealing with frequencies comparable to or greater than the gap 
frequency, or voltages greater than the gap voltage, the simple RSJ model of a weak link 
must break down. 
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For input derived from a voltage source, the calculation of the excited I-V curve 
from Werthamer’s formulation is relatively straightforward and has been performed by 
Hamilton (1972) (see 58.3). When we have the more usual current source the calcula- 
tion is much more difficult but McDonald et aZ(1976) have recently computed the 
unexcited I-V curves for a range of shunt capacitances. Some of their curves are 
compared with that for the RSJ model in figure 14(c). We notice that there is not only a 
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Figure 14. High-frequency effects at T= 0. (a) Werthamer’s response functions as a function 
of frequency or voltage; the first three plots represent the normal current and the 
amplitudes of Josephson’s sin 4 and cos 4 term, the latter inverted ($8.1). (b) Repre- 
sentative measurements of Ii(V) compared with theory (Hamilton 1972; $8.3). 
(c) I-V characteristics for ideal current-fed junction calculated by McDonald et al 
(1976). (d )  Same as for (c), with allowance for effect of surface impedance ($8.1). 

strong peak at the voltage associated with the Riedel peak but also structure at the odd 
submultiple voltages, produced by harmonic generation in the current-fed junction. 
Allowance by McDonald et aZ for the skin effect in the junction produced further, more 
rounded structure at the even submultiple voltages (figure 14(d)).  These conclusions 
were anticipated by Werthamer and are most interesting, since they provide a possible 
explanation of the ‘subharmonic structure’ in tunnel junctions, first observed by 
Taylor and Burstein (1963). The  structure was originally interpreted as due to multi- 
particle tunnelling, but Giaever and Zeller (1971), by using a light-sensitive tunnel 
junction in which the tunnel probability can be varied and also by varying other 
parameters, have shown convincingly that Werthamer’s explanation is a better one. 
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Almost identical structure has recently been observed in microbridges (Gregers- 
Hansen et nl 1973). McDonald et al find that increasing the shunt capacity 
removes the Riedel peak from the I-V characteristic which, as one would expect, 
rapidly becomes similar to that obtained by using the voltage-source model. No 
systematic calculations of excited characteristics under current-source conditions have 
been published yet, though a number of ad hoc modifications of analogue computations 
designed to make partial allowance for high-frequency effects have been reported. 

8.2. Evidence for  the existence and sign of the cos + term 

The term cos + Im j"z(u) in the expression for the current (8.2) corresponds to real 
transitions, but nevertheless contains an interference factor; Josephson has referred to 
it as the quasiparticle interference term. Unlike the supercurrent term, it is associated 
with loss in the system and the first experimental evidence for its existence was obtain- 
ed from measurements of the bandwidth of the plasma resonance in tunnel junctions 
by Pedersen et al (1972). We have already discussed the plasma resonance and its 
observation by the same group in $7.7. Pedersen et a1 extended this work by examining 
the bandwidth of the resonance as a function of the DC current bias within the zero-order 
step, i.e. they studied the losses as a function of the mean value of +. They concluded 
that the variation in loss with + followed Josephson's prediction within their limits of 
error, but only if the sign of the cos + term was reversed?. They found, in fact, that 
y = 01/00 = - 0.9 I 0.2, while the microscopic theory gives y = + 0.93 under corre- 
sponding conditions. They regarded their conclusion as partly provisional, because 
(i) the accuracy was not very high, (ii) an unexpected loss due to coupling to a geo- 
metrical resonance had to be subtracted out on an ad hoc basis, and (iii) the contribu- 
tion of other forms of loss to the bandwidth was not fully established. Nevertheless, it 
is difficult to think of any plausible explanation of their results other than a variation in 
the quasiparticle current with phase having the opposite sign to that predicted by 
Josephson. 

The effect of the cos #I term on both unexcited and excited I-V characteristics was 
calculated (using a value of 01 which was independent of voltage) by Auracher et a1 
(1973) who concluded that the effects would be fairly small and would in practice be 
difficult to distinguish from the effects of shunt capacitance. However, Falco et ul 
(1973) repeated the calculation with a Johnson noise source included and found that the 
noise-rounding of the zero-voltage step is strongly dependent on the value of y. On 
fitting this calculation to their data on the noise-rounding of steps in Notarys- 
Mercereau bridges they obtained the value y= - 0.8 5 0.2. This conclusion is also 
difficult to interpret (i) because, although it is interesting to find evidence for the 
presence of a cos 4 term in bridges, the theory of the normal current in bridges is 
essentially different from that for normal current in tunnel junctions and almost any 
theory is likely to lead to a variation in the quasiparticle current with + which is an 
even periodic function, and (ii) because the calculation made by Falco et  a1 included 
no noise source corresponding to the cos4 term itself although, since the term is 
dissipative, such a source must surely be present. 

Evidence for the cos+ term in point contacts has been found by Vincent and 
Deaver (1974) who, by using an RF SQUID configuration of suitably low inductance, 
were able to bias the contact at phases between i n  and n, which are unstable for a free 

t The note added in proof at the end of their paper, in which they state that the sign does 
after all agree with theory, was later withdrawn (Langenberg 1974). 
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weak link. By coupling the system to a suitable resonant tank circuit and observing the 
frequency and bandwidth of the resonance for small excitation as a function of DC flux 
applied they were able to determine the shunt conductance of the point contact as a 
function of I$ for all 4. They obtained a good fit with theory on assuming a conduc- 
tance of the form uo (1 + y cos 4) with y close to - 1. They have a simple model for the 
conductance of a point contact which indeed predicts y = - 0.90 for point contacts 
under their conditions but, again, we must note that their results are not necessarily 
related to the question of the sign of the cos 4 term in tunnel junctions. Similar results 
have been reported for microbridges by Nisenoff and Wolf (1975). 

On the theoretical side there has been some purely formal confusion about the sign 
of the cos I$ term, but in a recent review Langenberg (1974) has concluded that there is 
a theoretical consensus that y should be positive for small voltages. This is in conflict 
with an unpublished argument of Tinkham, based on the Kronig-Kramers dispersion 
relations, which appears to show that the sign must be negative. However, Josephson 
has himself criticized this argument. It will be interesting to see what new conclusions 
appear on this subject. 

The experimental conclusions for tunnel junctions are not yet fully convincing. If 
the theory is proved wrong (for other than trivial reasons) it will be the first point at 
which any serious flaw has appeared in the edifice erected on Josephson’s foundations. 
I t  is now a matter of some importance to make further experimental checks on the sign 
of the cos4 term, for instance by looking at voltages greater than 2A/e (where the 
theory predicts that u1 becomes large and negative) or by applying the methods of 
Falco et aZ(l973) and of Vincent and Deaver (1974) to tunnel junctions. 

8.3. Observations of the Riedel peak 

The peak in the supercurrent amplitude Re; when the Josephson frequency is 
twice the gap frequency, first noted by Riedel(1964)) has been satisfactorily checked by 
Hamilton (1972)) who made a careful series of measurements of excited I-V charac- 
teristics in voltage-biased tunnel junctions. On account of the voltage bias, spikes 
rather than steps appear at the Josephson frequencies and special techniques have to 
be adopted to eliminate hysteresis in the measurement of step height as a function of 
RF input. But the voltage bias also means that it is easy to determine the relation 
between height and j”z(u) using Werthamer’s formulation and Hamilton found that, as 
the frequency is varied, there should be an oscillation of the relative heights of the 
even and odd high-order spikes as individual spikes pass the Riedel peak, super- 
imposed on the usual oscillation of height with RF power. By measuring this oscillation 
Hamilton was able to reconstruct the shape of the Riedel peak. A magnified portion of 
his results close to the peak region is compared with theory in figure 14(b) and we see 
that the theoretical singularity is broadened by about 2% in frequency, which is not 
unreasonable when considering the probable anisotropy of A and lifetime effects in the 
tin films which Hamilton used. 

Hamilton was not able to draw firm conclusions about the behaviour of Re 3 2  at 
frequencies much higher than the Riedel peak. The experiments of McDonald et al 
(1972) and of Blaney (1974) on mixing laser radiation in the THz region using niobium 
point contacts do not allow precise conclusions to be drawn, but show that in these 
devices Re j ” z  does not fall very rapidly with frequency, in agreement with the theory for 
tunnel junctions. 
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8.4. Quantum noise in tunnel junctions 

The size of the voltage fluctuations across a Josephson device is important in 
several applications, particularly in microwave mixing ($1 1.2) and in the broadening of 
the Josephson radiation or the radiation-induced steps used in measuring the e/h ratio 
($11.1). We have already discussed in $7.9 the effects of a given level of noise on the 
steps, but there we assumed that the noise source was simply the classical Johnson 
noise of the shunt resistor in the model junction. The  advent of accurate measurements 
of e/h encouraged theoreticians to examine in much more detail the behaviour of 
Josephson devices as noise sources. The  first step was the calculation by Scalapino 
and others (see Dahm et a1 1969) of the noise due to quasiparticle currents in a tunnel 
junction. They assumed that the currents were described by the first-order terms in 
the tunnel Hamiltonian and calculated the quasiparticle current fluctuations in a 
junction biased at constant voltage V. The  result for the fluctuation at frequency v is 

e dv eV+hv coth - - - -+I~(V-hv /e)  coth ___ 2kT 2kT 

where IN( V )  is the DC quasiparticle tunnel current which flows at voltage V. The form 
of this result is easy to understand if we remember that at fixed voltage the current 
fluctuations at frequency v are due to virtual transitions which involve the same excita- 
tions as do the real transitions occurring in DC current flow at the voltages V +  hv/e. 
But we have to remember that while real DC current is the dzyerence between the for- 
ward and backward transition rates (with a factor f1 - f2 in the occupation numbers) 
both forward and backward virtual transitions contribute positively to the noise power 
(with a factor fi( 1 -f2) +f2( 1 -f~)). The  ratio between these factors accounts for the 
terms in coth (eV? hv)/2kT in ( 8 . 3 ) .  Several limits of (8 .3 )  are worth noting. 

(i) High temperatures. If we define an effective resistance Reff= V/ IN(V)  then in 
the high-temperature limit we have I-)=4kT/Reff the usual Johnson noise 
formula. 

(ii) High current. If eV is much larger than both hv and kT ,  we find . I m = 2 e I o ,  
the usual expression for shot noise. 

(iii) Low temperature, zero bias. I n  this limit we have => = 4hv@ + $)/Reif, 
where %= [exp (hv/KT) - 11-1, the usual expression for quantum-limited Johnson noise. 

In  a real circuit (where the source will not have zero impedance) the voltages across 
the junction can be calculated by treating the noise currents just described as sources in 
parallel with the junction. The  noise generated by the source must also be included: if 
the source is at room temperature its noise may well be larger than the junction noise. 

A more surprising contribution was pointed out by Stephen (1968), who noted 
that although under voltage bias conditions the supercurrent is dissipation-free and 
therefore noise-free, under other conditions a DC supercurrent can exist at finite 
voltage (see figure lo), and since this supercurrent is dissipative, there must be an 
associated noise term. The  reason for the dissipation is that under, for instance, 
current bias conditions there is a large AC voltage applied to the junction at the 
Josephson frequency and this means that pairs can make real transitions across the 
barrier with the stimulated emission of photons. T o  model this dissipation Stephen 
regarded the junction formally as being coupled to a cavity in which the photons were 
created-in the real case the ‘cavity current’ just means the AC currents flowing in the 
junction and the external circuit at the Josephson frequency. I n  the low-frequency 
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limit he found an extra contribution to the current noise source given by 

dv= 2eQ& coth (eQV/2kTo) dv (8.4) 
where in this case the term in coth (eeV/2KTo) comes from the photon occupation 
number for the model cavity and To is its effective temperature, Is is the DC part of the 
supercurrent and e* is the pair charge, 2e. I n  practice this term is only important at 
relatively large voltages, when it reduces to a supercurrent shot noise, 2e”Is dv. 

These predictions were checked by Kanter and Vernon (1970a) for noise at 150 kHz 
using niobium point contacts and measuring the fluctuations directly. They found 
reasonable agreement with theory and in particular were able to see the supercurrent 
shot noise, which could be suppressed by applying a magnetic field. The  correspond- 
ing voltage fluctuations when the source has finite impedance lead by a simple calcula- 
tion to phase fluctuations and hence frequency spreading of the Josephson emission 
linewidth. Dahm et aZ(1969) and Silver et aZ(1967) have measured such linewidths in 
tunnel junctions and point contacts and found good agreement with theory (the 
bandwidth near Tc is of the order of ~- ‘ (2e /h )~kTRdyn  which is typically 107 Hz, but 
may fall to 105 Hz on self-induced steps having small values of R d y n ) .  Measurement of 
such linewidths has, in fact, been suggested as the basis of a noise thermometer working 
down to very low temperatures (Kamper and Zimmerman 1971). Rather little work has 
been done so far on noise at the very high frequencies where Josephson mixers are 
likely to be most useful. 

The  tunnel theory just discussed treats the motion of individual quasiparticles or 
the transitions involving individual pairs as independent and this means that the 
predictions may not apply very well to other types of device such as microbridges or 
SNS junctions in which correlated motions would probably smooth out shot noise in 
particular. 

9. Other weak links 

We showed in 92.3 that any pair of weakly coupled superconductors whose state 
varies periodically with the phase difference between them is expected to show 
Josephson effects. This obviously includes a wide range of devices other than tunnel 
junctions and in this section we shall discuss the physics of th.eir operation. 

9.1. Josephson’s generalized calculation 

Although his original letter was only concerned with tunnel junctions, Josephson 
gave in his Doctoral Thesis (see Josephson 1965) a generalized calculation applicable 
to any weak link structure, written in the language of thermal Green’s functions which 
had recently been applied to superconductors by Gor’kov and otherst. His result 
showed that the supercurrent flowing between two regions can be written quite 
generally as 

I -  2ielf JJ [n(r’) - n(r)] G-Jr’, r)Gu(r’, r)A(r)A*(r’) d3r d3r‘ (9.1) 
w 

f This calculation was not published at the time; the first published account of the method 
was given independently by de Gennes (1963). The technique is expounded in the book by 
Abrikosov et al (1963). 
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where T’ is the time-ordering operator, G and are the thermal Green’s functions 
which describe electron propagation from Y to Y’ in the superconducting and normal 
states respectively, and the function n.(r) specifies the regions between which the 
current is to be calculated: n ( r )  is equal to 1 in the first region and 0 in the second 
region. The physical content of this result is that the supercurrent between the 
regions depends on the ordinary propagation characteristics for electrons between the 
regions and on the amplitudes and phases of the order parameter within the regions, 
but that there is no requirement that the order parameter should be finite within the 
weak link itself. 

As Josephson pointed out, this result leads at once to a generalization of the weak 
link concept. If we can treat A as constant over the important region of integration on 
each side of the barrier, then (9.1) reduces to the form 

where K,  and hence 11, involves an integral over Green’s functions which span the 
boundary. Evidently we can always obtain Josephson’s relation if we can treat A as 
constant on the two sides, or even simply as having constant phase. This will be so 
provided (i) that the barrier current is small, so that the supercurrent in the bulk 
superconductors is small enough to allow us to treat the phase of A as a constant within 
them, and (ii) that the integral from the barrier region itself (where A must be changing 
phase) is negligible. This formalism allows us to predict at once that several familiar 
structures should behave as weak links. For tunnel junctions the barrier is so thin 
compared to the region of integration (which extends a coherence length into the 
superconductors) that the barrier integral is negligible; the same applies to sufficiently 
small bridges and point contacts. Josephson noted that the result will apply for SNS 
junctions if A is small in the N region and that supercurrents should be able to cross a 
substantial thickness of normal metal corresponding to the range of the Green’s 
functions. He  also anticipated that magnetic impurities (which upset the phase 
cancellation between G-, and GJ would have a strong destructive effect on the 
supercurrents. 

Josephson’s generalized formalism has been extensively exploited by theoreticians 
as a starting point for the calculation of junction supercurrents from first principles. 

9.2. The raiciobridge 

Careful investigation of the I-V curves of small bridges of superconductor was 
begun by Parks and Mochel (1964), who were looking for evidence of the quantized 
current vortices in thin films predicted by Tinkham (1963). They expected that when 
they varied the applied magnetic field, vortices would enter the bridge region one by 
one. They interpreted the resistance as being due to an intermediate state containing 
islands of superconductor in a sea of normal metal and they expected that the appear- 
ance of this state as the temperature was raised would be affected by the number of 
quantized vortices present, and indeed they found a periodic variation of resistance 
with field which appeared to confirm their idea. But Anderson then pointed out 
that this idea could be simplified and connected with the Josephson effect by a slight 
modification: it was not necessary to invoke an intermediate state to explain the finite 
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resistance, for the bridge could be simultaneously superconducting and resistive. This 
would occur if quantized vortices (which each contain one quantum of flux, @o= h/2e) 
were moving across the bridge (normal to the current flow) at a rate of V/@o=2eV/h 
vortices per second. This flow would simultaneously induce the voltage along the 
bridge and ‘unwind’ the phase difference along the bridge as rapidly as it was generated 
by the voltage (because the line integral of phase around a vortex is 2n: see 92.4). In 
this picture, the modulation of resistance with field would be due to the quantum 
interference of the supercurrents at different points across the width of the bridge (as 
in Rowell’s experiment on tunnel junctions). Moreover, the frequency 2eV/h at which 
vortices cross the bridge is just equal to the Josephson frequency. Anderson expected 
that if this flow of vortices existed, it might be possible to phase-lock it to an applied 
microwave field; if this occurred, AC Josephson effects would be visible. He encourag- 
ed Dayem to look for such an AC effect and the results were very gratifying. The argu- 
ment and the first observations were published soon after the first observations of the 
Josephson effect (Anderson and Dayem 1964). 

Experimental work has now established the following points. 
(i) Only small bridges less than 1 pm in width and length show AC effects like those 

in current-driven tunnel junctions. Longer bridges show weaker, less predictable AC 
effects (Dayem and Wiegand 1967). 

(ii) Unlike tunnel junctions, fairly small bridges show steps at subharmonic 
voltages V =  nhw/2em (Dayem and Wiegand 1967). 

(iii) Under some conditions microwaves can increase the size of the zero-voltage 
step in microbridges (the Wyatt-Dayem effect which we consider in 99.3). 

(iv) In  very small bridges near T,, the simple RSJ model applies accurately to micro- 
bridges (the requirement appears to be that the bridge should be small compared to the 
Ginzburg-Landau coherence length) (Gregers-Hansen and Levinsen 1971, figure 1 l (b)) .  

(v) At temperatures of more than a few tenths of a degree below Tc most bridges 
show more Complicated AC effects and hysteresis appears in the I-V characteristic. 
This has been shown to be connected with the appearance of localized hot spots kept 
normal by Joule healing (Skocpol et aZl974). 

(vi) Steps in the unexcited I-V curves for long, narrow microbridges (up to 
150 pm long and about 1 pm wide) have been shown to be due to discrete localized 
phase-slip centres, each having essentially the same I-V curve and a resistance which 
corresponds to a length of about 10 pm of the bridge (considerably greater than the 
coherence length) which is independent of temperature but varies with resistivity, 
The AC effect in such bridges is the sum of the AC effects at the individual phase-slip 
centres (Skocpol et aZl974). 

The theoretical situation is complicated by the existence of three apparently dif- 
ferent theories of the behaviour of microbridges. These theories are, however, more 
closely linked than appears at first sight and they are all written in terms of Ginzburg- 
Landau theory, which describes the behaviour of the order parameter Y in situations 
in which it varies in space and time. First we have Anderson’s picture, which we dis- 
cussed above. According to Anderson any system through which vortices can pass is 
likely to show the Josephson AC effects, and if the vortex passes easily and does so every 
time the phase across the bridge increases by 257, then we have a non-hysteretic system 
whose free energy is periodic in phase difference and therefore a Josephson device in 
the sense discussed in 52.3. I t  was soon realized, however, that Josephson effects were 
visible in bridges much too narrow to contain a complete vortex, so narrow in fact 
that they could be treated as one-dimensional; and the remaining two theories both adopt 
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a one-dimensional picture. We must first recognize that this is not intrinsically dif- 
ferent from Anderson’s picture-all that has happened is that the process in which a 
vortex crosses the bridge now appears as a process in which Y is reduced to zero at 
some point on the length of the bridge. 

The  first of the two theories was put forward by Baratoff et a1 (1970). It was based 
on ordinary time-independent Ginzburg-Landau theory (which is appropriate for 
calculating equilibrium current-carrying states in superconductors) and showed that 
under certain conditions a microbridge of superconductor would be expected to show a 
sinusoidal current-phase relation when in thermal equilibrium. This theory has been 
developed by Gregers-Hansen et a1 (1972) and shows that in sufficiently short bridges 
not only is the current proportional to sin 4 but also that near Tc the magnitude of the 
supercurrent is given by the same function of the gap parameter and the normal bridge 
resistance as in Josephson’s theory for tunnel junctions. Both predictions agree with 
experiment. 

The  other theory, suggested by Notarys and Mercereau (1971), is apparently dif- 
ferent. It suggests that the ‘unwinding’ of the flux when there is a finite voltage across 
a microbridge occurs when the voltage drives the ordinary supercurrent beyond the 
ordinary critical current ; the supercurrent then collapses, superconducting order is 
destroyed, re-forms, and the process begins again. According to Notarys and 
Mercereau it is this essentially non-equilibrium relaxation oscillation which is associated 
with the Josephson frequency. The idea was taken up by Skocpol et a1 (1974) who 
developed a fairly complete description of the process of collapse and used it success- 
fully to explain the resistance of the phase-slip centres which they had found in long 
microbridges. We can see that the two theories are more closely related than appears 
at first sight as follows. I n  situations where the order parameter varies from place to 
place, it obeys the first Ginzburg-Landau equation, which we shall write as 

(see, for instance, Werthamer 1969). We have omitted the terms which depend on the 
magnetic field (which are not important in very narrow bridges) and we have included 
time-dependent terms on the right about which there is some controversy: it is not 
clear how far these terms are valid for ordinary superconductors having a finite energy 
gap, For our present purposes we can regard this equation as containing a plausible 
description of how Y changes with time, even if the details are open to question. Note 
that the case of thermal equilibrium (when p is independent of position) corresponds 
to the solution in which (9 3) is separable in space and time and the two sides of (9.3) 
are both zero. The  right-hand side then gives simply the Josephson relation he= - 2p. 
The left-hand side gives the equilibrium solution in space. The quantityf is sketched 
as a function of IYj and T in figure 15(a). Clearly, we have states of zero current in 
which Y is constant and /\TI takes the value which makesfzero. We also have equili- 
brium current-carrying states where Y has the form A eiax and [Yl is smaller. The 
maximum current density occurs for some finite value of A, and increasing q beyond 
this point reduces A so rapidly that the current density falls: this is the critical current 
density referred to by Notarys and Mercereau. T o  describe what happens when the 
critical current is exceeded, we must solve (9.3) with the equation describing what 
happens to p :  

a J /  ax = a/ ax( J s  + JN) 
=(Ae/m>a/ax(1Y12ae/ax)+(cs /e )a2~/ax2=0.  (9.4) 
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The  solution of these equations is not immediately apparent, but we may gain some 
insight by noting that the problem has a mechanical analogue. If we have a light elastic 
string of uniform tension extended in the x direction whose displacement from the 
x axis in polar coordinates is expressed by the complex number Y, then (9 .3 )  can be 
interpreted as an equation giving the balance of forces acting on the element of string as 
follows: (i) the term in aW?/ax2 corresponds to the forces due to the tension in the 
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Figure 15. Ginzburg-Landau theory for microbridges. (a) f (Y,  T). (b)  Mechanical analogue 
for long junction. (c) Phase slip occurs in a shorter junction. (d)  Reversible situa- 
tion in a very short junction. 

string, (ii) the term in fY corresponds to a radial force proportional tof(1Yl) which 
repels the string from the x axis at short distances but attracts it at large distances, and 
(iii) the right-hand term corresponds to a viscous drag force acting between the string 
and a medium rotating around the x axis at an angular velocity proportional to p. If we 
imagine that this medium is driven to rotate only by the string and by the viscous drag 
between its layers then equation ( 9  -4)  just expresses the fact that the total torque 
acting on the medium due to the drag of the string (supercurrent term) and the viscous 
drag in the neighbouring medium (normal term) must be zero. 

This allows us a good deal of insight into the solutions. I n  a long thin bridge a small 
supercurrent corresponds to a stationary, gently spiralling string (figure 15(b)). A 
larger current corresponds to a tighter spiral nearer to the axis. As the twist of the 
spiral is increased, a point is reached at which the repulsion from the axis cannot resist 
the tension in the string. I n  principle this instability occurs everywhere simultaneously, 
but in practice there will be a weak spot. At this spot the string will slip through the 
x axis, its motion damped by the viscous medium, which will itself rotate in the neigh- 
bourhood of the weak spot (figure 15(c)). This process corresponds to the phase-slip 
centre discussed by Skocpol et aZ(l974).  In a short junction, on the other hand, the 
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boundary conditions mean that the string must be at a large distance from the x axis at 
each end (\‘PI fixed). If the junction is short compared to the coherence length 
60 then ( 9 . 3 )  shows that on the scale of the length of the junction the curvature of the 
string is negligible (figure 15(d)) and in this case the torque due to the string (super- 
current) will vary like sin +, This corresponds to the solution considered by Baratoff 
et aZ(l970) which only applies to short microbridges. 

9.3. The Wyatt-Dayenz efJect in microbridges 

This effect in microbridges was first reported by Wyatt and co-workers (Wyatt et a1 
1966); the same anomaly was also seen by Dayem at about the same time (Dayem and 
Wiegand 1967). The effect, which was thought very peculiar when first observed and 
is still not completely accounted for, is an increase in the critical current with micro- 
wave power (figure 16(a)). This is contrary to the predictions of the RSJ model shown 
in figure l l ( b )  and it can be quite dramatic, especially near the critical temperature. 
Several workers have repeated and extended the original observations (see, for instance, 
Gregers-Nansen and Levinsen 1971). The details of the effect are complex, but can be 
crudely summarized as follows. 

(i) The effect of the microwaves on the critical currents is like that of an increase in 
the critical temperature by a few mK, and indeed microwaves can induce a critical 
current just above the usual critical temperature. 

(ii) The effect is only apparent above 1 GHz, typically, and becomes rapidly 
stronger at higher frequencies. 

(iii) The effect appears to saturate as a function of RF power, as though the micro- 
waves could only raise Tc by a definite total amount (see the plot of step height with RF 
power in figure l l ( b )  where the effect is visible). 

Two recent discoveries provide useful evidence about the nature of the effect. As 
we have already mentioned ($8.1) Gregers-Hansen et a1 (1973) have found ‘sub- 
harmonic gap structure’ in the I-V curves of microbridges. When the data were 

Figure 16. The Wyatt-Dayem effect. (a) Variation of critical current with microwave power 
for small tin bridge at 9.6 GHz at three different temperatures (Wyatt et a1 1966). 
(b) Increase of critical current produced by phonon excitation in an aluminium 
bridge as a function of reduced temperature fitted to a modified Eliashberg theory 
(Tredwell and Jacobsen 1975). 
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examined in detail, they found that the gap parameter in the bridge region was not 
constant but increased with the Josephson frequency in much the same way as the 
critical current increases with microwave frequency in the Wyatt-Dayem effect. They 
suggested that the AC Josephson currents were having the same effect as the externally 
applied microwaves. More recently Tredwell and Jacobsen (1975) have shown that the 
critical current of microbridges can be enhanced even more strongly by high- 
frequency phonons than by microwaves. I n  the presence of a strong phonon signal a 
microwave signal produces no further enhancement and the RSJ model works well. 

A number of explanations have been proposed. Hunt and Mercereau (1967), having 
discovered that the transition temperature of small superconducting bridges was 
depressed by an amount proportional to V-liZ where V is the volume of the bridge, 
successfully explained this effect as being due to the extra entropy in the system when, 
in the normal state, the relative phase of the two sides is free to fluctuate; this lowers 
the normal state free energy and so decreases the transition temperature. They went 
on to suggest that the Wyatt-Dayem effect might be explained if the microwave field 
had the effect of restoring the original transition temperature by inhibiting all fluctua- 
tions of the relative phase. It is, however, not clear how the microwave field could 
constrain the relative phase when the bridge is normal, nor does this approach explain 
the results of the phonon experiment. A very recent papertby Lindelof (1976) suggests 
that the microwave field drives the excitations away from the centre of the bridge and 
hence allows the order parameter to increase in magnitude. This is indeed a possible 
explanation, though the details of his argument may need modification. A rather 
different explanation was put forward earlier by Eliashberg (1970) who suggested that 
the effect of the microwaves is to increase the energy spread rather than the spatial 
spread of the excitations. So long as the microwaves do not increase the number of 
excitations this has the effect of increasing the order parameter (by increasing the 
availability for pairing of the dominant states near the gap edge). Eliashberg’s theory 
explains neatly why the enhancement of critical current increases with frequency as it 
does. Moreover, it is clear that high-frequency phonons should produce a similar 
effect and so it is satisfying to note that Tredwell and Jacobsen (1975) report quantita- 
tive agreement between their observations and a suitably modified Eliashberg theory 
(figure 16(b)). Although no similar fit has been reported for the microwave effect, it is 
clear that the Eliashberg theory will at least provide a major component of the final 
explanation. It is also clear that analysis of the Wyatt-Dayem anomaly is unlikely to 
lead to any fundamental revision of our picture of the Josephson effects. 

9.4. SNS junctions and related devices 

By an ordinary SNS junction we mean a layer of a non-superconducting metal such 
as copper sandwiched between two superconductors. Josephson’s generalized calcula- 
tion can be applied to such a system as we have already noted (59.1). We can see that 
measurable supercurrents will cross 0.1 pm or more of copper and that the Josephson 
relation will be obeyed. However, to calculate the behaviour of the normal currents 
and supercurrents in detail we need to know the Green’s functions to be inserted into 
(9.1) and to calculate them we need in turn to know how the order parameter behaves 
within the sandwich. This involves us in the theory of the proximity eflect, the spread- 
ing of superfluid properties into normal metals. The  Ginzburg-Landau theory which 
helped us in understanding microbridges is not adequate in this regime and we must 
turn to the non-local form of the microscopic theory developed by Gor’kov and 

56 
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applied to this problem by de Gennes and others (see de Gennes 1966). This theory is 
a substantial one and we shall only refer briefly to a few of its features, 

(i) The  spatial variation of the order parameter is the solution of Gor’kov’s equation 

which replaces the BCS self-consistent equation (3.6). The  kernel K,  like the term 
V / ~ E I ~  in (3.6), is proportional to the interaction parameter V and also depends on the 
nature of the one-particle excitations in the neighbourhood of Y, Y’, which in turn 
depends on A: the equation has to be solved self-consistently. When A is small (as it is 
near the critical temperature of the sandwich) K is independent of A and the solutions 
are relatively easy to obtain (de Gennes 1964). For a discussion of how to find solu- 
tions in the general case see Hook and Waldram (1973). 

(ii) In  a metal such as copper where the interaction parameter is small the critical 
current falls off exponentially with thickness, the decay length being of the order of 
(hv~l/iZT)l/2 in impure niaterials (typically 10-8 m or more). But if the ‘normal’ metal 
is in fact a superconductor only just above its transition temperature, the decay length 
can be much greater. 

(iii) The small value of V in a metal such as copper means that the excitations in it 
are more or less normal. The SNS junction therefore carries large normal currents at 
voltages below the gap voltage which do not fall exponentially with the junction thick- 
ness. Thus in an SNS junction Josephson’s relation eIlR = &TA connecting the critical 
current and the resistance does not apply. 

The  physics of SNS junctions has been examined by Clarke (1969) who has found 
good agreement with the microscopic theory. The theory predicts, and experiment 
confirms, that of all Josephson devices the SNS junction is the closest to the simple RSJ 
model; we have already discussed some of the data in @6.5 and 7.12 (figures 8 and 13). 

The  SNS sandwich is unlikely to be useful as a device for two reasons: its resistance 
is typically 10-6 SZ, which makes matching it to conventional circuits almost impossible, 
and its IlR product is typically only 10--8 V, corresponding to frequencies in the MHz 
region. There is, however, a related device which does not suffer so severely from these 
limitations, known as the Notarys bridge (Notarys and Mercereau 1971). This device 
contains a bridge region overlayed by a layer of normal metal, which depresses the 
transition temperature through the proximity effect. Harris has recently achieved 
similar results by implanting magnetic ions and gives a clear discussion of the physics 
involved (Harris 1975). At low temperatures such devices behave like ordinary micro- 
bridges, but when the bridge region is above its bulk transition temperature (the rest of 
the sample being still superconducting) they behave like SNS junctions with a large 
decay length so that the bridge region may be several pm long. It can also be up to 
10 pm wide, so that it is much less likely to burn out accidentally than an ordinary 
microbridge. Depending on its dimensions the resistance can approach 1 SZ, but 
the I1R product is generally still poorer than it is for tunnel junctions and short 
microbridges. 

A(Y) = J K(Y, Y‘)A(Y‘) d3r’ (9-5) 

9.5. Modified tunnel junctions 

cally important. 

9.5.1. Semiconductor tunnel junctions. The main difference between a semiconducting 
sandwich at low temperatures and an SIS junction is that, since the band gap is smaller, 

Two particular modifications of the tunnel junction seem likely to become techni- 
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the tunnel decay length is greater and for a given current density the barrier can be 
much thicker. Huang and van Duzer (1975) have made junctions with critical currents 
of 30 mA using silicon barriers more than 0.1 pm thick. These devices are potentially 
very important on account of three features: they should be more reproducible and 
reliable than tunnel junctions, their capacitance is smaller for a given critical current, 
and their I1R product can be close to the theoretical limit. 

9.5.2. Granular microbridges. The granular microbridge reported by Deutscher and 
Rosenbaum (1975) is made of small superconducting granules in an insulating matrix. 
Supercurrent passes by Josephson tunnelling between the granules, making the matrix 
behave like a bulk superconductor of high resistivity and low critical current density. 
This means that the bridge dimensions can be made of the order of 10 pm without 
reaching the long-bridge regime, even at low temperatures. This device appears to be 
reliable and reproducible and has very small capacitance combined with useful resis- 
tance and critical current. Though little work on it has yet been published, it appears 
very promising and has already been used in a working RF SQUID. 

9.6. Point contacts 
Point contacts are made by lightly pressing a sharp superconducting point onto a 

flat superconducting plane; the material used is almost always niobium. In  spite of 
their extensive use in both SQUID and microwave applications, little certain is known 
about their mode of operation, though the device is presumably a cross between a very 
small, thin tunnel junction and a microbridge. The fact that small contacts under light 
pressure usually show some structure at the gap voltage (especially those which are 
most effective as mixers in the submillimetre waveband) suggests that tunnelling is 
involved, but since the form of the I-V characteristic can be drastically modified by 
varying the mechanical history of the contact, it is clearly dangerous to generalize. 
Point contacts were extensively developed by Zimmerman and others for use in 
SQUIDS (see Silver and Zimmerman 1967) and by Grimes and later workers for micro- 
wave applications (see Grimes and Shapiro 1968). The following features of point 
contacts make them useful. 

(i) They can be adjusted in situ to obtain the required critical current etc, and 
although rather fragile, can now be made very reliable by encapsulation after adjust- 
ment. 

(ii) They are very easy to make (except for ultra-high-frequency applications, 
when only very sharp tips seem to work). 

(iii) They have excellent Ill? products, negligible capacitance, and can be made 
with resistances up to 50 Cl, which makes matching relatively easy. 

(iv) They are so far the only devices to have shown Josephson effects at frequencies 
well beyond the gap frequency. 

9.7. Current-phase measurements 
The question of how accurately Josephson’s relation IS = I1 sin 4 is obeyed in any 

particular weak link is not altogether easy to answer. The agreement of quantum 
interference patterns with prediction is confused by the effects of self-fields and non- 
uniformity in junctions, and time-dependent effects are confused by uncertainty about 
the behaviour of the normal currents. If the periodic function is markedly non- 
sinusoidal, steps or spikes should appear at submultiples of the Josephson voltage in the 
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inverse AC effect. Such steps are indeed seen in Zarge junctions of most types, but this 
again can be understood as being due to self-field effects, Small tunnel junctions, S N S  
junctions and microbridges do not show submultiple steps. 

Early attempts (Fulton and Dynes 1970) to measure directly the relation between 
IS and q5 in the time-independent state were subject to some uncertainty and accurate 
measurements have only been reported fairly recently (Jackel et a1 1974, Waldram and 
Lumley 1975). The measurements are made in the configuration discussed in $6.6 in 
which the weak link is in parallel with a bypass loop. The problem is to determine the 
flux within the loop and hence q5 (from (6.9)) when a given current is flowing in the 
link. The latter authors solved this problem by working in a thin-film geometry in 
which stray flux from the current leads was less than 2 x 10-3 flux quanta. Then for a 
fixed input current I1 the externally applied flux (DE was varied until the circulating 
current IC (measured using a separate SQUID) was zero. Under these conditions the 
only flux in the loop is the applied flux and the whole of the input current I1 is flowing 
through the device, so that the current-flux and hence the current-phase relations 
could be determined, in this case to an accuracy of about 0.5%. LI1 was made 
sufficiently small for the system to be stable at all phases, as described in $6.6. Direct 
measurement has shown that in small SNS junctions and point contacts the Josephson 
relation is accurately obeyed. The main interest in this field is to extend precise 
measurements to systems such as long microbridges and other devices where measur- 
able deviations from Josephson’s result may be expected. 

9.8. Josephson efsects in superjuid helium 

After the discovery of the Josephson effects in microbridges, Anderson suggested 
that analogous phenomena should occur in the flow of superfluid 3He through a small 
hole, and Richards and Anderson (1965) soon published the results of an experiment 
which appeared to demonstrate the existence of the inverse AC effect. They allowed 
superfluid helium to drain from one reservoir into another through a small hole and 
plotted for a series of sample times the rate of change of level (current) against level 
difference (analogue of voltage). In  the presence of high-frequency acoustic excitation 
the current showed a fairly convincing series of spikes (as would be expected, since we 
have in this case the analogue of a voltage source) at multiples and submultiples of the 
Josephson level difference. They also found that in the presence of the acoustic signal 
the level diflerence sometimes remained constant for long periods (this is also to be 
expected : the phase of the Josephson current relative to that of the ultrasonic excitation 
should be able to adjust itself when biased on a step so as to keep the level difference 
constant, the normal flow being cancelled by a superflow). Similar constant level 
differences were found and studied by Khorana (1969). 

However, doubt has been thrown on the interpretation of these experiments, especi- 
ally by the careful studies of Muzinsky (1973) who did an essentially similar experiment 
and again found static level differences. But in his case he discovered that (i) the ultra- 
sonic excitation generates a temperature difference across the hole (which in helium 
would make an important extra contribution to the chemical potential), (ii) that the 
static level differences did not vary correctly when further temperature differences were 
deliberately introduced, (iii) that the effect was more closely linked with the absolute 
level of the helium than with the level difference, and (iv) that the effect had the wrong 
frequency dependence. In  his experiments the static levels were almost certainly 
associated with acoustic resonances inside the reservoirs and in spite of careful search- 
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ing he found no trace of the true effect. I t  remains possible that the other observers 
really did see it in their somewhat different geometries, but until observations have been 
made which meet the important criteria which Muzinsky laid down, the Josephson 
effect cannot be regarded as confirmed in helium. 

10. Applications using quantum interference 

We discuss in the final two sections of this review some important applications of 
the Josephson effect. We shall concentrate on the most useful and elementary devices 
only. 

10.1. The DC SQUID 

We saw in $6.2 that the critical current of a pair of Josephson devices in parallel is 
sensitive to the magnetic flux which the loop so formed encloses. Such an arrangement 
can be used to detect flux changes of a small fraction of a flux quantum and has become 
known as a DC superconducting quantum-interference detector or DC SQUID. The theory 
and practice of the use of DC SQUIDS was largely worked out by Mercereau and his 
co-workers (see reviews by Mercereau (1970) and Clarke (1973)). They are particularly 
useful as null detectors in the measurement of very small magnetic fields and voltages. 

T o  understand how a SQUID works we must note that in most practical SQUIDS the 
self-field cannot be ignored. In  fact, if Ld1 00, where Ls is the self-inductance of the 
SQUID loop, a relatively small imbalance in the currents flowing through the two 
junctions is sufficient to cancel the effect of a few flux quanta applied to the loop and to 
a good approximation a circulating current in the SQUID loop will almost cancel any 
small applied flux. There must be a small residual phase difference, however, for 
otherwise IA  - 1~ would be zero and there would be no circulating current. Thus we 
can write for a symmetrical SQUID 

I A  = 11 sin ($0 + 401) 

IB = 11 sin ($0 - 801) (10.1) 

where 01 represents the small residual phase difference and $0 will be close to 8~ when 
the total current IA+IB is maximized. If we remember that &(IA-IB) must be 
close to the applied flux @E and that IA+ IB is maximized with respect to $0 we find, 
after a little algebra, that the critical current is equal to 211 when @ E = O  and equal to 
211 - @o/L, when @E = @Do. Thus in this limit the modulation depth of the critical 
current as @E is varied is only @o/L, and not 211 as it would have been if the self- 
inductance could have been ignored. If we take a typical value of the critical current I1 
to be 100 PA, then we find that the SQUID will indeed be self-field limited unless its 
inductance is less than about 2 x 10-11 H. -4 few SQUIDS have been made for special 
purposes (by vacuum evaporation of two junctions in parallel onto a single glass slide) 
whose inductances were as low as this, but the much more common arrangement is to 
use a double point contact circuit made by splitting a solid block of niobium in which a 
small hole has been drilled (figure 17(b)), for which the inductance will be more like 
5 x 10-10 H. Thus the modulation depth is typically a few microamps. The variation 
in critical current is normally detected by biasing the double junction with a sinusoidal 
or sawtooth current input which just exceeds the critical current at its peak; the 
integrated voltage output is then used to detect variations in the critical current. In a 
practical circuit a change of about 10-3 flux quanta in the applied flux can be detected. 
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Figure 17. SQUIDS. (a) RF SQUID and circuit. (b) DC SQUID. ( c )  SLUG. The current to be measur- 
ed, 111, passes along the centre wire and the critical current I ,  is measured between 
this wire and the solder blob. 

To use the SQUID as a current detector we can insert a coil carrying the current into 
the hole in the SQUID. A small superconducting coil of 50 turns might have a mutual 
inductance with the SQUID loop of 10-8 H, giving a current detection sensitivity of 
M/1O-3OO or 5 x 10-11 A. This is useful as a DC current detector, but not beyond the 
range of existing instruments. The SQUID really comes into its own as a null detector in 
low-voltage potentiometers. In a potentiometer circuit the out-of-balance current is 
AVjR, where R is the total resistance in the loop formed by the detector and the voltages 
being compared and the detector reading settles down with a time constant T= L/R 
where L is the self-inductance of the same loop. Thus we have two practical con- 
straints : 

A VIR 2 AI, RIL 2 1/70 (10.2) 

where AI is the current sensitivity of the detector and 70 is the maximum available 
observing time. The SQUID can produce an impressive performance as a voltage detec- 
tor for three reasons. 

(i) On combining these conditions we find that A V 2  (L/7o)AI. If we allow an 
observing time of 1 s and assume that the inductance of the potentiometer circuit can 
be brought down to, say, 10-7 H we find that the theoretical DC voltage sensitivity in the 
absence of noise can be as low as 5 x 10-18 V: the SQUID gains as a voltage detector 
because it combines good current sensitivity with the possibility of very low inductance. 

(ii) Although this limiting sensitivity can only be achieved for a particular value of 
R (10-7 SZ in the example quoted) by using a superconducting transformer the SQUID 
detector can in principle be matched to any reasonably low resistance. 

(iii) Being superconducting, the SQUID adds no resistance of its own to the circuit. 
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A particular form of SQUID developed by Clarke (1966)) who calls it the super- 
conducting low-inductance galvanometer or SLUG, is particularly robust and convenient 
for voltage measurements. It consists of an ordinary solder blob formed on a niobium 
wire (figure 17(c)). The current to be measured passes along the wire. Josephson 
contacts between the blob and the wire form through the oxide on the wire, often near 
the ends of the blob; in this geometry the 'hole' is the cylindrical space between the 
blob and the wire and the induced flux passes around the wire. The  current sensitivity 
of the SLUG is only about 1 pA which is much less than could be achieved in an ideal 
SQUID and its very small inductance is wasted because the external circuit inductance 
cannot normally be reduced below 10-8 13, so SLUGS have a voltage sensitivity no better 
than 10-15 V. Since the RMS Johnson noise in 10-7 Cl at 4 K is about 2 x 10-15 V, 
however, this performance is, in fact, close to the useful limit in most circumstances 
and in practice conventional SQUIDS are not much more sensitive than SLUGS for most 
purposes. Clarke et a1 (1971) have also suggested ways of increasing the SLUG sensitivity 
for special applications. SLUGS and SQUIDS have made possible many low-voltage experi- 
ments which were previously impossible. 

To use the SQUID as a$dd detector we link the input coil in the SQUID hole to a pick- 
up coil, using superconducting wire for the whole circuit. If, as is likely to be the case, 
the inductance of the pick-up coil and external circuit is appreciably larger than that of 
the SQUID itself, the flux transfer into the SQUID loop for a given external circuit is 
maximized when the number of turns in the input coil has been increased to the point 
where its self-inductance is equal to that of the external circuit. The  flux transfer ratio 
is then about equal to (Ls/Lext)'/' and the total flux transferred is of the order of 
(Ls/Le,t)'I'(AN)R where AN represents the area-turns in the pick-up loop. Since 
Lextl/2 is also proportional to N ,  nothing is gained by having many turns in the pick-up 
loop and the flux transferred depends mainly on the geometry. Using figures for a 
typical small pick-up loop and SQUID one finds a theoretical field sensitivity of about 
10-13 T. Practical SQUID magnetometers do, in fact, reach this sort of performance. 

10.2. RF SQUIDS 

The RF SQUID consists of a single device in a superconducting loop (for a review, see 
Giffard et aZ1972). Unlike the DC SQUID this structure has no DC critical current which 
can be measured by attaching leads to it but it can still be made sensitive to the static 
magnetic field by applying to it in addition an oscillating field of several flux quanta 
from a coil in a tuned circuit, resonant usually in the MHz region (figure 17(a)). The 
SQUID is arranged so that 2.rrLs11 is several flux quanta. The  characteristic shown in 
figure 6 ( f )  and discussed in $6.6 is then quite strongly 'folded back' and the RF field, 
which provides an oscillating term in +A, will drive the SQUID around a complex hys- 
teresis loop. The  loss in this loop depends on the number of hysteresis jumps made 
and it is this which is sensitive to the static part of +A, This means that the Q of the 
resonant circuit coupled to the SQUID loop varies periodically with the static flux 
applied to the loop in much the same way as the critical current does in the DC SQUID 
and can be used in a similar way to detect changes of a small fraction of a flux quantum. 

This idea has been extensively developed by Zimmerman and his co-workers, and 
for most purposes RF SQUIDS are more convenient than DC SQUIDS. They can have 
somewhat higher basic flux sensitivities, especially if the tank circuit frequency is high, 
and only one Josephson device is involved so that problems o€ critical current stability 
are much less severe. The  considerations involved in matching external circuits to the 
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SQUID hole (normally a small hole in a niobium block-see figure l7(a)) are essentially 
similar to those for a DC SQUID are discussed in the previous section. An RF SQUID and 
associated circuits with a basic flux sensitivity of 2 x lO-4@,0 in the frequency range 
0.1 Hz-5 kHz and corresponding voltage and field sensitivities of 10-13 V and 10-14 T 
can now be obtained commercially. RF SQUIDS are now important tools in magnetometry, 
and applications include NMR, CMN thermometry and geophysical field-gradient 
measurements. 

10.3. Josephson devices as computer elements 

Josephson devices have a number of attractions as high-speed switches and 
memories for use in computers and are now under active development by many 
workers, particularly at IBM Laboratories. Matisoo (1967) was the first to demonstrate 
that tunnel junctions can be switched very fast (in less than 1 ns) from the super- 
conducting to the normal state. In  a typical application a gate current passes through 
the device itself (the gate) and a coaztrol current passes through a conducting strip 
which lies over the device in such a way that its magnetic field enters the barrier and 
can quench the supercurrent by inducing quantum interference. In  such a switching 
operation the voltage across the device builds up in a time controlled by two con- 
straints: (i) the speed with which the control flux enters the junction and quantum 
interference is set up which, with the small circuit inductances that are possible, is 
extremely fast, and (ii) the speed of development of the DC voltage after quenching, 
which depends on the capacitance of the junction and the magnitude of the gate 
current. I n  a tunnel junction the voltage rises initially by charging the capacitance and 
then saturates with the sudden onset of normal current at the gap voltage, 2A/e. The 
transition time is given by (ZA/e)C‘/Ig which can easily be made substantially less than 
1 ns (Stewart 1969). A number of practical one-bit memory devices based on this idea 
have been proposed (for instance Clark and Baldwin 1967, Anacker 1969). The infor- 
mation is stored as a circulating supercurrent. In  Clark and Baldwin’s device, €or 
instance, the junction is in parallel with a superconducting bypass. The memory may 
be written by pulsing the gate current forwards or backwards. As the gate current 
rises, the supercurrent divides in such a way as to keep small the flux in the loop 
formed by the device and the bypass. The pulse is large enough to ensure that in this 
process the device current exceeds its critical value and when this happens the gate 
current is ‘steered’ into the bypass by the finite voltage developed across the device. 
Once this steering is complete the voltage falls and the device becomes super- 
conducting again. There is now a net flux in the loop generated by the bypass current 
and when, finally, the gate pulse passes, this flux is left behind with a net circulating 
current in the loop. The  memory can be interrogated by applying suitable pulses to a 
control strip. The  ‘steering’ time (which has to be added to the switching time) 
depends on the inductance of the loop, but can also be kept down to less than 1 ns. 

Apart from the basic advantage of high speed, Josephson devices have several other 
advantages. 

(i) No power is consumed by the memory during storage. 
(ii) They have a substantial output voltage of a few mV. 
(iii) Useful current gain: the current switched can be larger than the control current. 
(iv) High density: a memory of 106 bits can be stored on 1 cm2 without excessive 

(v) They are potentially cheap. 
heating. 
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The  main drawback is the difficulty of producing the thin oxide layers for tunnel 
junctions sufficiently reliably. Recent work on switches based on semiconductor 
junctions (Huang and van Duzer 1975) and microbridges using granular super- 
conductors (Deutscher and Rosenbaum 1975) may allow this problem to be avoided. 
Further developments investigated recently include the use of two or three devices in 
parallel to improve the current gain by making the quantum interference more sensi- 
tive to the control pulse (Zappe 1975) and the use of a single wide junction as a 
memory instead of a junction plus a loop, the information being stored as a flux line 
inside the junction (GuCret 1975). 

A rather different idea suggested by Anderson and developed by Fulton and Dunk- 
leberger (1973) is the flux shuttle. This consists of a very long tunnel junction to which 
are attached a number of control electrodes. The  junction can contain flux lines, as 
discussed in 56.5. Using the control electrodes small currents can be injected into 
finite lengths of the junction, which has the effect of trapping the flux lines in a series of 
magnetic potential wells. The  flux lines can be made to move along the junction by 
moving these potential wells and can be injected at one end by a control electrode 
when required. This device can act as a very fast shift register, in which a sequence of 
bits may be stored and moved along to be read either on emergence at the end or in situ, 
as required. 

It seems likely that the advantages of Josephson devices will be seen to outweigh 
the problems of refrigeration and that computers based on them will be built during the 
next few years. 

11. Applications using the AC effects 

As in the previous section I shall concentrate attention on what applications seem 
to be of most long-term significance and on the most technically advanced work 
reported. Soiymar’s book (1972) discusses the earlier high-frequency work in detail 
and some key references for further reading are mentioned in the text. 

11 .I. Precision measurements of e lh  and voltage 

The  measurement of the ratio of the fundamental constants e /h  by comparing the 
voltages of the steps in the I-V characteristic of a Josephson device with the frequency 
of the signal producing them was first suggested by Pippard almost as soon as the effect 
had been discovered. The  first very high-precision measurement was made by Parker 
et aZ(l967) using X-band microwaves applied to a wide range of tunnel junctions and 
point contacts. The  quoted accuracy was 6 ppm. The  major source of error was not 
due to any fundamental limitation but simply to the difficulty of comparing the step 
voltages of less than 1 mV with the existing voltage standards. I n  the most recent 
version of the experiment (Finnegan et aZl971) up to 500 steps are measured using a 
number of junctions in series and the accuracy has reached 0-12 ppm. The  precision is 
still not limited by the finite slope of the steps which, as we noted in $7.9, are extremely 
steep for the step height of 50 PA which mas used. These measurements have led to a 
substantial revision of the best fit to the values of a number of fundamental constants, 
the iargest change being an increase of 91 ppm in Planck‘s constant and the most signi- 
ficant a decrease of 20 ppm in the dimensionless fine-structure constant, which ap- 
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parently resolves an inconsistency between theory and experiment in quantum electro- 
dynamics which had been worrying theoreticians for some time. Measurements of the 
same type will almost certainly be used in the future to maintain, or even to define, the, 
voltage standard in terms of a frequency standard. For a review of work on this sub- 
ject, see Langenberg and Taylor (1971). 

To justify the measurement it was of course necessary to confirm the exactness of 
Josephson’s relation hv= 2eV which connects the step voltage with the frequency. 
Several authors have suggested that there may be frequency-pulling effects or noise 
effects which can alter the effective value of v or quantum electrodynamic effects which 
can alter the effective value of e. All of these arguments have been refuted; there seems 
every reason to believe that (i> the relation hv = 2Apc is an exact quantum conservation 
condition, and (ii) that the relation V = p c / e  is an exact description of what a real 
potentiometer measures when placed across a junction. Clarke (1968) has performed a 
simple and ingenious experiment which shows that the voltages across two SNS junc- 
tions of different materials both biased on the same step of their characteristics and 
joined in a ring? are equal to within 1 part in 108, and other experiments have shown 
that, to within 1 ppm, the experimental value of e/h is independent of step order, 
temperature, magnetic field, frequency, materials, and also on whether tunnel junc- 
tions, point contacts or solder-drop junctions are used in the observation. The  
measurements of e/h and voltage are therefore on very firm ground both theoretically 
and experimentally. 

11 -2. Microwace mixing 

Josephson devices can be used as microwave mixers of high efficiency and low 
noise (see Richards et a1 1973). Technical development has not yet proceeded very far, 
but it has been demonstrated that in the millimetre waveband they are at least the equal 
of other existing devices. In  the submillimetre band less data are available, but they 
may well prove to be the best mixers available and receivers based on them will 
probably soon be developed. Mixing can occur in at least the following modes. 

(i) With external local oscillator, biased off the Josephson steps. 
(ii) With external local oscillator, biased within a step (see $11.3). 
(iii) Using the Josephson frequency as local oscillator (with or without cavity 

stabilization). 
(iv) With external local oscillator, using hysteretic devices biased at the edge of a 

hysteresis region. 
Early experiments on mixing were reported by Shapiro and co-workers (see Grimes 

and Shapiro 1968). Richards and others at Berkeley have investigated both the theory 
and the practice of mixing in a thorough series of papers (see Taur et al 1974) for 
frequencies up to one-twentieth of the gap frequency, using mainly niobium point 
contacts. They have found remarkably close agreement with the simple resistively 
shunted junction model in noise performance as well as in mixing efficiency. For the 
likely applications the first mixing mode described is probably the best and it is also 
easy to understand: the signal beats with the local oscillator, and this produces a 
modulation of the step height at the intermediate frequency (cf figure 1l(b)). If the 

t There are, however, difficulties in deducing that the same would necessarily be true if the 
junctions were separate. 
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system is biased outside the vertical regions it behaves at the intermediate frequency as 
a current source of amplitude (ai/ 8iL)v is and source resistance ( aV/ 2i)zL. Calculating 
the power available is therefore simply a matter of calculating how the I-V character- 
istic behaves as a function of local oscillator current, as discussed in $7.8. The answer 
is a function of bias point, local oscillator power and source impedance. When these 
are optimized Taur et aZ(1974) find that: 

(i) At low signal frequencies the conversion efficiency is excellent and indeed 
conversion gain can occur (the power coming from the DC source), but at frequencies 
beyond the critical frequency given by w c  = 2eI lR/A the conversion efficiency falls off 
as (wc/ws)2. For niobium wc is 1.14 THz so in the submillimetre waveband there is a 
strong incentive to use materials of even higher Tc. 

(ii) For a given signal frequency, little efficiency is lost by using a local oscillator 
at a submultiple of the signal frequency, though more local oscillator power and more 
precise biasing are necessary. This is a very significant technical advantage at the 
highest frequencies. 

(iii) The mixer noise temperature referred to the input is equivalent to about five 
times the actual temperature of the device and is more or less independent of the 
conversion efficiency. Thus the fall in efficiency at high frequencies does not worsen 
the ratio of signal to mixer noise, though of course it makes the noise of later stages 
more important. 

(iv) The optimum local oscillator power required is small, typically about 1 pW if 
perfectly matched. 

Mixing using the internally generated Josephson frequency as local oscillator has a 
worse signal-to-noise ratio and is less efficient. I t  may also suffer from unacceptable 
frequency blurring unless quite exceptional measures are taken to stabilize the DC 
current source. Hysteretic mixing can give conversion gain factors as high as 50 but 
only at the cost of poor noise performance and narrow bandwidth. 

At frequencies beyond the gap frequency the validity of the RSJ model is suspect. 
For tunnel junctions Werthamer’s theory suggests at first sight that the fall in the 
Josephson current amplitude beyond the Riedel peak would further degrade the mixing 
performance at high frequencies. However, careful examination of (8.1) shows that 
this is not necessarily so. If an appropriate large DC bias is used one can arrange that 
eii6 has terms linear in the signal which have frequencies near the Riedel peak and 
actually take advantage of it; the corresponding transition is shown in figure 4(c) for a 
particular case. Conventional tunnel junctions are, however, useless at such high 
frequencies because of their large shunt capacitance and it is clear that relatively large 
microbridges in which the Josephson effect is a consequence of the Ginzburg-Landau 
theory will probably cease to operate when the frequency reaches the inverse of the 
Ginzburg-Landau relaxation time, which may be at the gap frequency or lower 
(Hojgaard Jensen and Lindelof 1975). The only devices to have shown convincing 
Josephson effects beyond the gap frequency are high-resistance point contacts; these 
devices commonly show some structure in their I-V curves at the gap voltage and may 
be intermediate in nature between tunnel junctions and very small microbridges. 
Steps and Josephson mixing have been seen in such niobium point contacts by a 
number of observers at frequencies up to five times the gap frequency, and indeed a 
technique is being adopted by standards laboratories in which point contacts are used 
to generate very high harmonics of microwave frequency standards for comparison 
with laser standards in the submillimetre region. The mixing efficiency and noise 
performance at these very high frequencies has not yet been explored. 
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11.3. Parametric ampliJLication 

We saw in $7.6 that a junction biased within the zero-order step has a small-signal 
inductance LJ equal to h/(2eI1 cos (5). Since this is a function of (5, it can be modulated 
by a signal at another frequency and it has been noted that the familiar properties 
associated with variable parameters should arise. The simplest useful effect is just 
mixing, but unless the intermediate frequency is unusually high this process is not 
competitive with the mixing when biased outside the step (see $1 1.2). A more interest- 
ing possibility is the use of resonant signal and idler circuits with an external pump 
signal, as in a conventional parametric amplifier. From a simple model calculation one 
finds that the parametric gain can be written as p(1 -P)-~(wI/ws) where WI and ws are 
the idler and signal frequencies and /3 is given by 

(11 * 1) 

where 40 is the equilibrium phase across the junction (which can be adjusted by the DC 
bias), J I  is the Bessel function, and (5p is a phase proportional to the pump amplitude, 
which can also be adjusted. Similar effects probably occur when the junction is biased 
within any of the vertical steps induced by the pump frequency. According to this 
simple model any required gain can be achieved provided WI < ( wc2/ws)J1 max2. This 
means that, if we use a local oscillator as pump and use as the load in the idler circuit 
the input of an IF amplifier, we can in principle get mixing with any required gain 
provided the IF frequency is low enough (and provided WI = w p  - ws, not WI = ws - up). 
This idea was presented and experimentally checked by Zimmer (1967) and by 
Feldman et al (1975) for the slightly more complicated condition 2wp= WIS os, in 
which the coupling between signal and idler is via the second harmonic of the pump 
frequency. This had two advantages: no DC bias was required, and it was possible to 
arrange that wp, WI and ws were almost equal and could conveniently be handled by the 
same resonant circuit. Feldman et al used an array of microbridges (to improve 
matching) and worked at 10 GHz. Gains of up to 16 dB and amplifier noise as low as 
8 K were measured and the agreement with the RSJ model with suitably adjusted 
parameters was good. Useful parametric gain at 30 MHz using the Josephson oscilla- 
tion as pump has been reported by Kanter and Silver (1971). If these ideas can be 
applied at higher frequencies the technical implications would be important. 
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