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The analytical expressions for both diagonal and off-diagonal ac and dc conductivities of graphene placed in
an external magnetic field are derived. These conductivities exhibit rather unusual behavior as functions of
frequency, chemical potential, and applied field which is caused by the fact that the quasiparticle excitations in
graphene are Dirac-like. One of the most striking effects observed in graphene is the odd integer quantum Hall
effect. We argue that it is caused by the anomalous properties of the Dirac quasiparticles from the lowest
Landau level. Other quantities such as Hall angle and Nernst signal also exhibit rather unusual behavior, in
particular when there is an excitonic gap in the spectrum of the Dirac quasiparticle excitations.
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I. INTRODUCTION

There is significant progress in fabrication of free-
standing monocrystalline graphite films with thickness down
to a single atomic layer1,2 and the relatively thick �thicker
than three monolayers� graphite films3–6 are now widely pro-
duced. The new one layer material, called graphene, pos-
sesses truly remarkable properties both from a technological
and theoretical point of view. Graphene is a promising can-
didate for applications in future micro- and nanoelectronics
due to its excellent mechanical characteristics, scalability
to the nanometer sizes, and the ability to sustain huge
��108 A/cm2� electric currents. By using the electric field
effect,1,2,4–8 it is possible to change the carrier concentration
in samples by tens times and even to change the carrier type
from electron to hole when the sign of applied gate voltage is
reversed. Another interest in graphene is related to the fact
that it represents a building block for the other forms of
carbon, viz., graphite is a stack of graphene layers, carbon
nanotubes are wrapped graphene layers, while fullerenes can
be created from graphene by introducing topological defects.

On the theoretical side, the conduction and valence bands
in graphene touch upon each other at isolated points in the
Brillouin zone and this results in the linear, Dirac-like �up to
energies of the order of 1000 K� spectrum of quasiparticle
excitations which makes graphene a unique truly two-
dimensional “relativistic” electronic system. The thinnest
graphite films can be described by a low-energy �2+1� di-
mensional effective massless Dirac theory.9,10 A recent
observation7,8 of the unconventional integer quantum Hall
effect �IQHE�

�xy = −
2e2

h
�2n + 1�, n = 0,1, . . . , �1.1�

which is expected from the analytical study11 based on the
fundamental properties of the �2+1� dimensional Dirac
theory, can be considered as the ultimate proof of the exis-
tence of the Dirac quasiparticles in this fascinating material.
A complementary numerical investigation of the Landau
level structure for a hexagonal lattice model with the nearest
neighbor and next-nearest-neighbor hoppings also led the au-
thors of Ref. 12 to the conclusion that the Hall conductivity

is quantized according to the rule �1.1�. In contrast to this
behavior expected for an ideal 2D graphene, thicker 2–10
layers thick films studied in Refs. 1–3 exhibit instead a con-
ventional Hall quantization �xy =−4�e2 /h�n.

The Dirac quasiparticles seem to be present not only in
graphene, but also in the highly oriented pyrolitic graphite
�HOPG�, single crystalline Kish graphite and the relatively
thick �thicker than 3–10 monolayers� graphite films, where
warping introduces other types of carriers.13 The Hall effect
features in HOPG graphite were observed in Refs. 14 and 15
�see also the latest Ref. 16�, but the Hall conductivity quan-
tization in these systems remains conventional.1,3,15,17 Never-
theless, the presence of the Dirac quasiparticles can be de-
tected using other experimental techniques. For example, the
differences between the Dirac and Schrödinger �massive�
quasiparticles may be observed in thermodynamic and mag-
netotransport measurements.1,3–6,15,17 For instance, the phase
of de Haas van Alphen and Shubnikov de Haas oscillations
for Dirac quasiparticles is shifted by �7,8,18–20 compared to
the phase of nonrelativistic quasiparticles. Moreover, the
Dingle and temperature factors in the amplitude of oscilla-
tions explicitly depend on the carrier density in the case of a
Dirac-like spectrum.18,19 These two characteristic features al-
low one to distinguish the Dirac quasiparticles from very
light, �0.01me �me is the electron mass� particles, and from
other carriers which are also present in graphite.20 The Lan-
dau levels in graphite are observed in high magnetic field
using both scanning tunneling spectroscopy21 and infrared
spectroscopy.22 The latter allowed one to observe in HOPG
the cyclotron resonance modes and to establish that some of
them reveal a �B dependence of the cyclotron frequency
which is expected for the Dirac quasiparticles. Actually, this
characteristic, �B, dependence shows up in various proper-
ties related to the Dirac quasiparticles. An interesting ex-
ample is the magnetization M �−�B �cf. Eq. �7.4� of Ref.
18� at zero chemical potential � which implies that the mag-
netic susceptibility �=�M /�B�−B−1/2 diverges at zero field.
Although the singularity of ��B→0� is smoothed �see Ref.
23 where another system with Dirac quasiparticles is consid-
ered� by a coupling between layers, finite temperature and/or
chemical potential, the presence of Dirac quasiparticles re-
sults in an anomalously strong diamagnetism of graphite.24
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The purpose of the present work is to extend the analysis
made in the previous papers18,19,25 �see also Ref. 26 devoted
to a so-called d-density wave state which is also described by
the same low-energy Dirac Lagrangian� where thermody-
namic and mostly diagonal dc magnetotransport properties of
graphene were studied. We derive analytical expressions
both for diagonal and off-diagonal ac conductivity which in
contrast to the previous papers include a frequency depen-
dent impurity scattering rate. Then we concentrate mostly on
the dc Hall conductivity giving throughout derivations of the
results presented in our short paper �Ref. 11� and considering
the limiting cases that were not yet considered.

The paper is organized as follows. In Sec. II general fea-
tures of the model for a single layer of graphene are de-
scribed. In Sec. III we present the analytical expressions for
both diagonal and off-diagonal ac conductivities, including
dc limits of these expressions �the details of calculation are
given in Appendix A�. Then in Sec. IV we consider the dc
Hall conductivity, the Hall angle and the Nernst signal are
studied in Sec. V. In particular in Sec. V B we discuss a
possibility of detecting a gap that may exist in the spectrum
of the quasiparticle excitations of graphene. In Conclusions,
Sec. VI, we give a concise summary of the obtained results.
The extra technical details concerning the Hall conductivity
in the clean limit are given in Appendix B. The equation for
chemical potential � is considered in Appendix C and the
solution of the Dirac equation in the symmetric gauge is
presented in Appendix D.

II. MODEL

As discussed, for example, in Refs. 18, 19, and 25, we
start directly from the conventional QED2+1 Lagrangian den-
sity

L = �
�=±1

�̄��t,r��i�0�	�t − i��� + ivF�
1		�x + i

e

c
Ax

ext

+ ivF�

2		�y + i
e

c
Ay

ext
 − 
����t,r� , �2.1�

where ��= ��1��t ,r� ,�2��t ,r�� is the four-component Dirac
spinor combined from two spinors �1�, �2� �corresponding
to K and K� points of the Fermi surface, respectively� that
describe the Bloch states residing on the two different sub-
lattices of the biparticle hexagonal lattice of the graphene
sheet. In Eq. �2.1� �� with �=0,1,2 are 44 � matrices be-
longing to a reducible representation in 2+1, for example,

��=�3 � ��3 , i�2 ,−i�1�, �̄�=��
†�0 is the Dirac conjugated

spinor, −e�0 is the electron charge, vF is the Fermi velocity,
and �= ±1 is the spin variable. More generally the number
of spin components Nf can be regarded as a flavor index and
Nf =2 corresponds to the physical case.

The external magnetic field B=�Aext is applied perpen-
dicular to the plane along the positive z axis and the corre-
sponding vector potential is taken in the symmetric gauge
Aext= �−By /2 ,Bx /2�. The energy scale associated with the
magnetic field expressed in the units of temperature reads

eBvF
2

c
→

eB	vF
2

c

1

kB
2 �K2� = 8.85 10−8vF

2�m/s�B�T� ,

�2.2�

where vF and B are given in m/s and Tesla, respectively. In
the following we set 	=kB=1, and in some places e=c=1,
unless stated explicitly otherwise. There is some disagree-
ment in the literature concerning the precise value of vF in
graphene which is related to an uncertainty in the value of
the nearest-neighbor hopping t. For numerical calculations
we assume that t�2.3 eV, so that vF�7.4105 m/s which
leads to the relationship eB→ �4.85104 K2�B�T�. Note
that the latest experiments7,8 indicate that vF��1–1.1�
106 m/s.

Since the Lagrangian �2.1� originates from a nonrelativis-
tic many-body theory, the Zeeman interaction term has to be
explicitly included by considering spin splitting ��=�
−�g /2�BB of the chemical potential �, where �B
=e	 / �2mc� is the Bohr magneton and g is the Lande factor.
However, for the relativistic quasiparticle spectrum with the
realistic values of vF�106 m/s and g�2 the distance be-
tween Landau levels turns out to be very large compared to
the Zeeman splitting,19 so that in what follows we will not
consider this term and just multiply all relevant expressions
by the above-mentioned number of flavors Nf. We note, how-
ever, that the latest measurements in high fields �up to
45 T�27 revealed a lifting of the spin and sublattice degen-
eracy, so that the half integer Hall quantization changes to
the integer one for fields B�20 T.

While simple tight-binding calculations �see, e.g., Ref.
28� made for hexagonal lattice of a single graphene sheet
predict that �=0, the real picture is more complicated and
the actual value of � in HOPG is nonzero due to interlayer
hopping, finite doping, and/or disorder. Moreover, a nonzero
and even tunable value of � �including the change of the
character of carriers, either electron or holes� is possible in
the electric-field doping experiments made on monocrystal-
line graphitic films.1,2,4–8 In our notations ��0 corresponds
to electrons and, accordingly, to the positive gate voltage, Vg.

The Lagrangian �2.1� also includes a gap 
, so that for
B=0 it describes quasiparticles with the dispersion E�k�
=−�±�vF

2k2+
2. Again, this gap is zero when noninteract-
ing quasiparticles on the hexagonal lattice with nearest-
neighbor hopping are considered. However, it could open as
a result of poor screening of the Coulomb interaction in
graphite25,29 and/or in the presence of an external magnetic
field �the phenomenon of magnetic catalysis�.30 The physical
meaning of this gap �or a singlet excitonic order parameter�
is directly related to the electron density imbalance between
the A and B sublattices of the biparticle hexagonal lattice of
graphene.29 The opening of such a gap was already the sub-
ject of an experimental investigation15 and we hope that the
predictions made in Refs. 25 and 29 will be tested again on
the new thin samples that are closer to the ideal graphene
considered in these theoretical papers.

In contrast to the diagonal transport coefficients, the off-
diagonal transport properties are sensitive to the sign of the
product eB. Thus for the lucidity of the presentation, we
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begin with the expression for the spectral function of Dirac
fermions and perform the calculation without assuming the
positiveness of the product eB.

The Green’s function of Dirac fermions described by the
Lagrangian �2.1� in an external field reads

S�t − t�,r;r�� = exp	−
ie

c
rAext�r��
S̃�t − t�,r − r�� ,

�2.3�

where S̃�t− t� ,r−r�� is the translation invariant part of S�t
− t� ,r−r��. Its derivation using the Schwinger proper-time
method and decomposition over Landau level poles has been
discussed in many papers �see, e.g., Refs. 26, 30, and 31�, so

here we begin with the Fourier transform of S̃�x−y� in the
Matsubara representation

S�i�m,k� = e−ck2/eB�
n=0

�

�− 1�n Sn�i�m,k�
�i�m�2 − Mn

2 ,

�m = ��2m + 1�T , �2.4�

where T is the temperature,

Mn = �
2 + 2nvF
2 eB/c �2.5�

are the energies of the relativistic Landau levels and

Sn�i�m,k� = 2�i�m�
0 + 
��P−Ln	2ck2

eB 
 − P+Ln−1	2ck2

eB 
�
− 4k�Ln−1

1 	2ck2

eB 
 , �2.6�

with P±= �1± i�1�2 sgn�eB�� /2 being projectors and Ln
��z�

the generalized Laguerre polynomials. By definition, Ln�z�
�Ln

0�z� and L−1
� �z��0.

In what follows we also need the retarded and advanced
Green’s functions that are obtained by analytic continuation
from positive and negative discrete frequencies, respectively,
SR��+ i0,k�=S�i�m→�+ i0,k� and SA��− i0,k�=S�i�m

→�− i0,k�. When the frequency dependent scattering rate
���� is included, they acquire the form

S�R,A���,k� = e−ck2/eB�
n=0

�

�− 1�nSn
�R,A��� ± i����,k�

�� ± i�����2 − Mn
2 .

�2.7�

The scattering rate ���� is expressed via the retarded fer-
mion self-energy, ����=−Im �R��� which in general de-
pends on the energy, temperature, field, and the Landau lev-
els index n. This self-energy has to be determined self-
consistently from the Schwinger-Dyson equation. The exact
form of this equation actually depends on the model assump-
tions about the impurity scattering, e.g., whether the impurity
scatterers are short- or long-range and in many cases this
equation is solved numerically. Exactly this kind of consid-
eration was made for graphene in Ref. 32, but in our paper
we pursue another goal which is to obtain a simple analytical
expression for the Hall conductivity. Accordingly here we
chose a different strategy. In Sec. III we derive general ex-

pressions for both frequency dependent �xx��� and �xy���
which include an unspecified frequency dependent scattering
rate ����. However, we make an essential for the analytical
work simplifying assumption that ���� is independent of the
Landau levels index n. This assumption is justified when
pointlike impurity scattering is considered.33 The expressions
obtained for �xx��� and �xy��� are suitable for investigation
of microwave and optical conductivities in graphene. Then in
Sec. IV we consider the case of constant width �=���=0�
=−Im �R��=0�=1/ �2��, where � is the mean free time of
quasiparticles and treat � as a phenomenological parameter.
This approximation allows one to obtain rather simple ex-
pressions for the Hall conductivity in the various limits.

III. GENERAL REPRESENTATION FOR ELECTRICAL
CONDUCTIVITY

The frequency dependent electrical conductivity tensor is
calculated using the Kubo formula

�ij��� =
Im�ij

R�� + i0�
�

, �3.1�

where �ij
R��� is the retarded current-current correlation func-

tion obtained by analytical continuation ��ij
R���=�ij�i�m

→�+ i0�� of the imaginary time expression:

�ij�i�m� =
1

V
�

0

�

d�ei�m��T�Ji���Jj�0�� ,

Ji��� =� d2rji��,r�, �m = 2�mT . �3.2�

Here V is the volume of the system, �=1/T is the inverse
temperature, and ji�� ,r� is the electric current density opera-
tor

ji��,r� = −
�L
�Ai

= − evF�
�

�̄���,r��i����,r� . �3.3�

The brackets in Eq. �3.2� denote the averaging in the grand
canonical ensemble. Neglecting the impurity vertex correc-
tions, the calculation of the conductivity reduces to the
evaluation of the bubble diagram

�ij�i�m� = − e2vF
2T �

n=−�

� � d2k

�2��2

tr��iS�i�n,k�� jS�i�n − i�m,k�� , �3.4�

where tr includes also the summation over flavor index and
S�i� ,k� reads

S�i�n,k� = �
−�

� d�A��,k�
i�n + � − �

, �3.5�

with the spectral function given by the discontinuity relation
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A��,k� =
1

2�i
�SA��,k� − SR��,k�� �3.6�

for SA,R�� ,k� defined in Eq. �2.7�. Note that the translation
noninvariant phase of the fermion Green’s function �2.3�
cancels out in �.

The sum over Matsubara frequencies in Eq. �3.4� is easily
evaluated when the fermion Green’s function is written using
the spectral representation �3.5�. After this is done the ana-
lytical continuation is easily performed and we obtain

�ij�� + i0� = e2vF
2�

−�

�

d�d��
nF���� − nF���
� − �� −� − i0

� d2k

�2��2 tr��iA��,k�� jA���,k�� ,

�3.7�

where nF��� is the Fermi distribution function nF���
=1/ �exp(��−�� /T)+1�. The representation �3.7� is suitable
for studying both diagonal �see Refs. 19, 25, 26, and 34� and
off-diagonal conductivities. In Appendix A we generalize the
calculations of the previous papers and obtain both diagonal
ac conductivity,

�xx��� =
e2Nf

4�2�
�

−�

�

d��nF��� − nF�����

Re� 2B


2 − �� + i��2 ��1�− B� −�2�− B��

+ ��1�− B� +�1�+ B� −�2�− B� −�2�+ B��

�	
2 − �� + i��2

2B

 + ��↔ ��,�↔ ���� ,

�3.8�

and off-diagonal ac conductivity

�xy��� = −
e2Nf sgn�eB�

4�2�
Im �

−�

�

d���nF��� − nF�����

 ��2�− B�
2B


2 − �� + i��2 + ��2�− B� −�2�B��

�	
2 − �� + i��2

2B

 + ��↔ ��,�↔ ����

+ �nF��� + nF�������1�− B�
2B


2 − �� + i��2

+ ��1�− B� −�1�B���	
2 − �� + i��2

2B



− ��↔ ��,�↔ ����� . �3.9�

Here � is the digamma function, and we denoted B
�vF

2 eB /c, ��=�+�, �=����, ��=�����, and introduced
the following short-hand notations

�1�±B� ��1��,��,�,��, ± B�

=
��� + i����� + i�� − 
2

�� − �� + i�� − ������ + �� + i�� + ���� ± 2B
,

�2�±B� ��2��,��,�,��, ± B�

=
��� − i����� + i�� − 
2

�� − �� + i�� + ������ + �� + i�� − ���� ± 2B
.

�3.10�

To familiarize oneself with Eqs. �3.8� and �3.9� let us first
consider the diagonal conductivity in two simple cases.

Influence of the Landau quantization on the optical con-
ductivity. We postpone a more comprehensive study of the
influence of the gap 
 and the form of the function ���� on
the ac conductivity for the future publication. Here to illus-
trate the behavior of �xx��� described by Eq. �3.8� in Fig. 1
we show the results only for 
=0 and ����=const. One can
see that for B=0 there is a Drude peak. However, when the
magnetic field is applied the spectral weight is transferred
from the Drude peak to the resonance peaks in the agreement
with a recent experiment.22

A. dc limits of the longitudinal and Hall conductivities

Let us first consider the dc limit of �xx���,

�xx��,B,T� = �xx��→ 0�

= e2Nf�
−�

�

d��− nF�����AL��,B,�,
� ,

�3.11�

where

FIG. 1. �Color online� The optical conductivity �xx��� mea-
sured in e2 /h units as a function of the frequency 	� /� for two
different values of B for �=50 K, T=15 K, and �=10 K. We use
eB→ �4.5104 K2�B�T�.
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AL��,B,�,
�

=
1

�2

�2

�vF
2eB/c�2 + �2���2�2�2

+
��2 + 
2 + �2��vF

2eB/c�2 − 2�2��2 − 
2 + �2�vF
2 eB/c

��2 − 
2 − �2�2 + 4�2�2

−
���2 − 
2 + �2�

�
Im �	
2 − �� + i��2

2vF
2 eB/c 
� , �3.12�

and −nF����= �1/4T�cosh−2���−�� /2T� is the derivative of
the Fermi distribution. Here the scattering rate ���� remains
a frequency dependent quantity. The expression �3.11� was
originally derived in Refs. 25 and 26 �see also Ref. 34 for a
related derivation of the thermal conductivity� under the as-
sumption ����=const.

Similarly to the dc expression �3.11� for �xx one can take
the dc limit �→0 in Eq. �3.9� and obtain

�xy��,B,T� =
e2Nf sgn�eB�

2�2 �
−�

�

d���− nF�����
B��2 − 
2 + �2�

B2 + 4�2�2 � 2���B + �2 + 
2 − �2�
��2 + �
 − ��2���2 + �
 + ��2�

+ Im �	
2 − �� + i��2

2B

�

+ nF���Im��1 + i����2�� + i��
B

+
2�� + i��


2 − �� + i��2 −
�� + i���
2 − �� + i��2�

B2 ��	
2 − �� + i��2

2B

��� , �3.13�

where now ���d���� /d�. The term with nF��� can be integrated by parts and we finally arrive at

�xy = e2Nf sgn�eB��
−�

�

d��− nF�����AH��,B,�,
� , �3.14�

where

AH��,B,�,
� =
1

2�2�B��2 − 
2 + �2�
B2 + 4�2�2

2���B + �2 + 
2 − �2�
��2 + �
 − ��2���2 + �
 + ��2�

+
2��

B
+ arctan


 + �

�

− arctan

 − �

�
− 2 Im ln �	
2 − �� + i��2

2B

 + Im�	B��2 − 
2 + �2�

B2 + 4�2�2 +

2 − �� + i��2

B

�	
2 − �� + i��2

2B

�� .

�3.15�

Recall that here B�vF
2 eB  /c. Since we are considering

noninteracting quasiparticles, the temperature and � depen-
dences of the conductivities �3.11� and �3.14� are only con-
tained in the derivative of the Fermi distribution. The spec-
tral function �3.15� for the Hall conductivity turns out to be
more complicated than the corresponding function �3.12� for
�xx, therefore it is useful to consider simple limiting cases
and to establish the correspondence between our answer and
the results obtained by previous authors.

IV. HALL CONDUCTIVITY

A. Classical limit �eB �vF
2 /c™�2 ,�2. Drude-Zener formula

We begin our consideration with the classical limit B
→0 �or more exactly eB vF

2 /c��2 ,�2�, when Landau
quantization is not essential. Using the asymptotic expan-
sions

ln ��z� = 	z −
1

2

ln z − z +

1

2
ln�2�� +

1

12z
−

1

360z3 + O	1

z

4

,

��z� = ln z −
1

2z
−

1

12z2 +
1

120z4 + O	 1

z5
 , �4.1�

we obtain that for 
=0 and B→0

AH��,B,�,0�

=
1

2�2

B�

1 + B2/�4�2�2�



�3�4 − 8�2�2 − 3�4��� − 3��2 + �2�3 arctan
�

�

6�3�2��2 + �2�2 .

�4.2�

Accordingly for the T=0 conductivity we find

�xy��,B,0� = −
e2vF

2NfeB�2 sgn �

2�c

1

�vF
2eB/c�2 + 4�2�2 ,

� � � , �4.3�

where we restored evF
2 /c. The diagonal conductivity Eq.

�3.11� in the same limit reads
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�xx =
�0

1 + ��c��2 , �0 =
e2Nf�

4��
, �4.4�

where the mean-free time of quasiparticles �=1/2� enters
instead of the transport time �tr because we ignored the ver-
tex corrections, and we introduced the cyclotron frequency,

�c =
eBvF

2

c�
=

eB
cmc

, mc =
�
vF

2 . �4.5�

Here in the second equality �c is written in terms of an
fictitious “relativistic” mass, mc, which plays the role of the
cyclotron mass in the Lifshits-Kosevich formula.7 The defi-
nition of mc shows that the chemical potential � in
graphene acquires also the meaning of the cyclotron mass, so
that the latter is easily tunable by the gate voltage.7

Accordingly the Hall conductivity �4.3� can also be writ-
ten in the Drude-Zener form

�xy = −
�c��0 sgn�eB�sgn �

1 + ��c��2 . �4.6�

This result agrees with �23� of Ref. 32 when we take �tr=�
=1/2� and Nf =1. As we will see later for Nf =2 all our
results are twice bigger than the corresponding results of
Refs. 32 and 35.

Finally we consider the relationship �see Appendix C�

� =
Nf

2�	2vF
2�

2 sgn � �4.7�

between the chemical potential � and carrier imbalance
�density� � for the relativistic quasiparticles �	 is restored�.
This relationship is in agreement with Fig. 3�d� of Ref. 7 and
with Ref. 8, viz., the cyclotron mass in graphene, mc

= ��	2 �  /vF
2�1/2 is indeed ���. Since experiment7 shows

also that �0�� for B=0, one may conclude that the carrier
concentration dependence ������−1 for �� �.

For the Hall resistivity one obtains from Eqs. �4.4� and
�4.6� that

�xy = −
�xy

�xx
2 + �xy

2 =
B

ec�
. �4.8�

Thus for weak magnetic field we arrive at the standard ex-
pression for the Hall coefficient RH=1/ec� which does not
depend on the scattering mechanism and is used for measur-
ing the carrier density.

B. The limit T™ �� � ™��eB �vF
2 /c ,�

Another interesting and analytically treatable limit is T
� � ��eB ,�. Since for T→0 the derivative −nF����
→���−��, the Hall conductivity �xy is directly expressed
via Eq. �3.15� and we need only

AH��,B,�,0� �
�B�

2�2 �4�B + �2�
B2�2 −

2�2

B3 ��	 �2

2B

�,

�� �B,� . �4.9�

Substituting in Eq. �4.9� the asymptotic expansion of ���z�

obtained from Eq. �4.1� in the limit �eB�� we have

AH��,B,�,0� � −
4�B

3�2�3 . �4.10�

Finally restoring the evF
2 /c factor, we obtain

�xy = −
4e2vF

2NfeB�

3�2c�3 , �� �eBvF
2/c� � . �4.11�

In the same limit the conductivity �xx is “universal”25,35,36

�xx =
e2Nf

�2 . �4.12�

Moreover, theoretically the universal value �e2 /2�	��4/��
�or e2 /�h per each type of carrier� is expected even in arbi-
trary fields25 because the n=0 Landau level is field indepen-
dent. �We note that Nf =2 when Zeeman splitting is neglected
and Nf =1 when it is taken into account�. The experiments,7

however, show a bigger value of the conductivity per carrier
type, e2 /h. Note also that in Ref. 37 it is argued that for the
long-range impurities in graphene the weak-localization cor-
rection makes a positive contribution to the conductivity �xx
that might explain the mentioned difference.

In the opposite limit, �eB�� we find from Eq. �4.9� that
AH�−2� / ��2�� and, accordingly,

�xy = −
2Nfe

2�

�2�
, �� �� �eBvF

2/c . �4.13�

This limit is important in the strong field �Hall� regime at
small carrier densities. It allows one to extract the impurities
scattering rate � studying the dependence of the Hall con-
ductivity as a function of the chemical potential �or carrier
density� in the vicinity of the point where the gate voltage
changes its sign.

C. Unusual quantization of the Hall conductivity in graphene

In this section we discuss a full derivation of Eqs. �4�–�6�
from Ref. 11. Analyzing Eq. �6� of Ref. 11 we demonstrated
that the quantized Hall conductivity in graphene is equal to
odd multiples of 2e2 /h. Here we recapitulate the arguments
of Ref. 11 discussing a few interesting moments not men-
tioned there.

There are two ways to derive �xy in the clean limit. The
first option is to take the limit �→0 directly in Eq. �3.7� as
was done in Ref. 25 and the second option is to use a general
expression Eq. �3.14�. This option is considered in Appendix
B where we show that

�xy = −
e2Nf sgn�eB�

4� �tanh
� + 


2T
+ tanh

� − 


2T

+ 2�
n=1

� 	tanh
� + Mn

2T
+ tanh

� − Mn

2T

� . �4.14�

Note that �xy is an antisymmetric function of �. Rearranging
terms in Eq. �4.14� and using that tanh��−�� /2T=1
−2nF��� one can rewrite Eq. �4.14� in terms of the Fermi
distribution
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�xy = −
e2Nf sgn�eB�

2� �
n=0

�

�2n + 1��nF�Mn� + nF�− Mn�

− nF�Mn+1� − nF�− Mn+1�� . �4.15�

This representation for �xy is an equivalent of Eq. �18� from
Ref. 38 derived for an ideal two-dimensional electron gas

�xy = −
e2

2��
n=0

�

�n + 1��nF��n
nonrel� − nF��n+1

nonrel��,

�n
nonrel =

eB

mc
	n +

1

2

 , �4.16�

where m is the effective mass of the carriers with a parabolic
dispersion law. The difference between the positions of Lan-
dau levels and their degeneracy for the Dirac quasiparticles
and for nonrelativistic electron gas is encoded in the energies
Mn��n and �n

nonrel��n+1/2� with n=0,1 ,2 , . . ., and in the
different factors 2n+1 and n+1 in Eqs. �4.15� and �4.16�,
respectively.

Now we rewrite Eq. �4.14� as follows25

�xy = −
e2Nf sgn�eB�sgn �

2�	
�B, �4.17�

with the filling factor39

sgn ��B =
1

2�tanh
� + 


2T
+ tanh

� − 


2T

+ 2�
n=1

� 	tanh
� + Mn

2T
+ tanh

� − Mn

2T

� .

�4.18�

Since we are considering the quantized Hall conductivity we
restore Planck constant h=2�	 in Eq. �4.17� and in what
follows. Taking for definiteness ��0, 
=0 and using that
tanh�� /2T�=sgn��� for T→0, we obtain from Eq. �4.17�
that

�xy = −
e2Nf sgn�eB�

2�	 �1 + 2�
n=1

�

��� − Mn��
= −

e2Nf sgn�eB�
h

	1 + 2� �2c

2	eBvF
2 �
 , �4.19�

where �x� denotes the integer part of x. The usual semiphe-
nomenological argumentation �see, e.g., Ref. 40� for the oc-
currence of the IQHE states that in the presence of disorder
when the dependence ���� becomes a smooth function, the
function �xy��� remains steplike. Accordingly, when in Eq.
�4.19� the spin degeneracy is counted by choosing Nf =2, we
arrive at the Hall quantization rule �1.1�. The classical �C7�
and quantum �4.19� Hall conductivities coincide only for the
odd fillings, �B=2n+1 as shown in Fig. 2, where for com-
parison the dependence of �xx��B� is also plotted. As ex-
pected the minima of �xx also occur at �B=2n+1, while the
peaks of �xx coincide with the steps of �xy��B�.

The appearance of the odd integer number in Eq. �1.1�
rather than simply integer fillings is caused by the fact that
the degeneracy of the n=0 Landau level is only half of the
degeneracy of the levels with n�0 �see Appendix D�. The
lowest Landau level in the irreducible representation of the
�2+1� dimensional Dirac theory is special, because depend-
ing on which of two inequivalent irreducible representations
is used it is occupied either by the electrons �fermions� or
holes �antifermions� while at n�1 there are solutions of the
Dirac equation describing both electrons and holes �see Eq.
�D4��. The Dirac Lagrangian �2.1� which embeds a pair of
independent K points on graphene’s Fermi surface, is written
using a parity preserving 44 reducible representation of �
matrices that contains two irreducible representations with
different parities. Therefore the Landau levels associated
with these K points merge into the full spectrum of the Dirac
fermions in graphene. The superposition of the two spectra
corresponding to the two inequivalent irreducible representa-
tions clearly explains a halved degeneracy of the lowest Lan-
dau level in graphene, because this level can be occupied by
the holes from the K point �when ��0� and electrons from
the K� point �when ��0�. This property of the n=0 level
does not depend on whether the gap 
 has a finite value or

=0. On the other hand, the higher levels may contain either
electrons �when ��0� or holes �when ��0� both from K
and K� points.

The other way to explain the origin of “strange” odd num-
bers is to refer to, the mentioned above, positions of the
minima of Shubnikov de Haas oscillations of �xx. Their un-
usual positions are caused by the phase shift of � between
the quantum magnetic oscillations for the relativistic quasi-
particles �see Refs. 18–20� and the corresponding oscilla-
tions for the nonrelativistic quasiparticles. The origin of the
phase shift can be traced back to the different quantization of
the relativistic Mn��n and nonrelativistic �n

nonrel��n
+1/2� Landau levels.18

FIG. 2. �Color online� The Hall conductivity �xy and the diag-
onal conductivity �xx measured in e2 /h units as a function of the
filling �B for T=2 K, �=1 K, and B=2 T. We use eB→ �4.5
104 K2�B�T� and assume that 
=0. The straight line corresponds
to a classical dependence �xy =−ec�sgn � /B �see Eq. �C7��.
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One can gain a deeper insight into this by considering the
operator S= �1/2��d2r��†�t ,r� ,Sz��t ,r��, where �,� is the
commutator and the matrix

Sz = I2 � ��3/2� = 	�3/2 0

0 �3/2

 . �4.20�

The operator S generates the rotations of spinors in the plane
by an angle � that are described by the operator U���
=exp�i�S�. It is natural to interpret S as the pseudospin op-
erator, because we use the spinors that are related to the
presence of two sublattices in graphene. Each K point of
graphene’s Fermi surface is characterized by a two-
component spinor and there are two inequivalent K points.
There is a temptation to make a direct analogy between the
pseudospin operator S and the spin operator in �3+1� dimen-
sional Dirac theory. This, however, is misleading because the
very notion of the spin in �2+1� and �3+1� dimensions is
meaningful only for a massive particle. For a massless par-
ticle in �3+1� dimension instead of spin one introduces the
helicity which characterizes the projection of its spin on the
direction of momentum. Since in the �2+1� dimensional case
one cannot make rotations around the direction of the quasi-
particle momentum lying in the two-dimensional plane, the
helicity concept for massless particles is meaningless in this
case. Indeed, one can check that the pseudospin operator S is
identically zero for free massless Dirac particles.

Nevertheless, below we argue that for the massless quasi-
particles in graphene in an external magnetic field the pseu-
dospin acquires a new meaning closely related to the Berry’s
phase discussed in the different context.8,20

One can obtain �see Appendix D� for eB�0 and Nf =1
that

S =
1

2� �
m=−�

0

�b0m
† b0m − c0m

† c0m� + �
n=1

�

�
m=−�

n



Mn

�anm
† anm + bnm

† bnm − cnm
† cnm − dnm

† dnm�� , �4.21�

where anm �bnm� are the annihilation operators of fermions
with energies Mn given by Eq. �2.5� �antifermions with en-
ergies −Mn� for K point and cnm �dnm� are annihilation op-
erators of fermions �antifermions� for K� point. The quantum
number m n in Eq. �4.21� reflects the degeneracy of each
level in angular momentum. Interestingly in the limit 
→0
only the n=0 level contributes to S, so that the notion of the
pseudospin is meaningful only for the states from the lowest
Landau level, i.e., for the zero modes.

Let us now consider the rotation by the angle �=2� of a
quasiparticle state n=0�=b0m

† 0� from the n=0 level. Here
0� is the vacuum state. For 
=0 one can show that
U�2�� n=0�=exp�i�� n=0�, i.e., after the rotation by 2�
the quasiparticle state from the lowest Landau level changes
its phase by �. On the other hand, the states from the levels
with n�1 remain invariant, because for 
=0 the operator
U��� does not contain the operators that can change these
states. It occurs exactly due to this Berry’s phase shift for
massless quasiparticles from the n=0 level in the external

field, that the carriers in graphene cannot be considered as
simply very light carriers with a finite mass. Note that in
�3+1� dimensional Dirac theory all fermionic states acquire
the phase shift by � after the rotation by �=2�.

If the n=0 level had the same degeneracy as the higher
levels, the Hall conductivity would had been quantized in a
more conventional manner,

�xy
semicond = −

4e2

h
n, n = 0,1, . . . , �4.22�

which one might expect for a two-band �the first band would
correspond to the electrons with �n=Mn−� and the second
band, accordingly, to the holes with �n=−Mn−��, two-
valley �corresponding to K and K� points of graphen’s Fermi
surface� semiconductor. Again in Eq. �4.22� we assumed that
e ,B ,��0.

It is appropriate here to mention that although the conven-
tional quantized Hall conductance �xy =−�e2 /h�n with n
=0,1 , . . . is often derived by solving the nonrelativistic
Schrödinger equation, it was shown41,42 that there are no
relativistic corrections to this expression and the same result
remains valid for a relativistic electron gas confined in the
plane described by the �3+1� dimensional Dirac equation.
The case of graphene is different, because the Dirac theory is
used to describe an effective theory of nonrelativistic quasi-
particles with a linear dispersion. Although one usually asso-
ciates the Dirac-like description of graphene with a linear
dispersion of quasiparticle excitations, E�k�=−�±vF k for
B=0, the quantization �1.1� survives even when there is a
nonzero gap 
.

Another important feature of graphene is that its Dirac-
like description is based on the 44 reducible, parity pre-
serving representation of � matrices which allows one to
include two inequivalent K points of graphene’s Fermi sur-
face. From a theoretical point of view one may also choose a
separate K point and consider the role of the parity breaking
terms �see, e.g., Refs. 43 and 44�. This approach is closely
related to early unsuccessful45 attempts to explain the IQHE
using the chiral anomaly. However, in the case of the parity
anomaly the Hall effect occurs even in zero magnetic field
and in the absence of Landau levels.43 On the contrary, the
Dirac-like description of graphene preserves parity, so that
the Hall conductivity is always absent in zero magnetic field.

D. Illustrations of analytical results for the Hall
conductivity

Figure 2 is plotted to illustrate the odd integer Hall quan-
tization �1.1� and it is computed on the base of Eqs. �3.14�
and �3.15�. Since the representation �3.14� and �3.15� is de-
rived under the approximations discussed in Secs. II and III,
this consideration ignores the presence of localized states.
Thus for finite scattering rate � this representation for
�xy�B ,� ,
� provides only an approximate description of the
Hall quantization, because � remains nonzero even between
Landau levels. Nevertheless, considering the relative sim-
plicity and analytical character of the two expressions �3.11�
for �xx and �3.14� for �xy, overall they give an amazingly
good description of the conductivities. In particular, one can
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see �xx is indeed very small in the plateau regions of �xy.
The IQHE can be obtained by varying either carrier con-

centration as done in Fig. 2 or the value of the applied mag-
netic field. The latter possibility is shown in Fig. 3, where
both conductivities �Fig. 3�a�� and resistivities �Fig. 3�b�� are
plotted at T=3 K. To observe the quantum Hall effect in
conventional semiconductors one should go down to the
temperatures lower than 10 K, while in graphene it can be
observed up to 100 K. This wider range of temperatures is
related to the fact that for the Dirac quasiparticles the dis-
tance between Landau levels is much larger than for the non-
relativistic quasiparticles in the same applied field, so that
some signatures of Shubnikov de Haas oscillations remain
notable even at room temperature.7

Although the definition of the filling factor39 does not
depend on whether relativistic or nonrelativistic quasiparti-
cles are considered, the relationship �4.7� between the chemi-
cal potential and carrier imbalance shows that the small fill-
ing factors become accessible in relatively small, compared
to conventional semiconductors, fields. These features make

the IQHE in graphene very promising for fundamental re-
search and possible applications.

Finally one can observe that �xy =0 for B→0. This illus-
trates the point mentioned in Sec. IV C that the IQHE in
graphene is conventional in the sense that its explanation
does not rely on any kind of parity breaking anomaly.43,44

E. Magnetic catalysis and its observation in the Hall
conductivity

The flat, field independent behavior of �xx�B� and �xy�B�
for B!1.1 T seen in Fig. 3 corresponds to the regime where
only the lowest Landau level is filled, because it always stays
below the chemical potential �except for �=0�. As we al-
ready mentioned in Sec. II, it was predicted in Refs. 25 and
30 that for Dirac fermions in 2+1 there is a phenomenon
called magnetic catalysis. It is expected that above a critical
field Bc which is a function of � and T, a gap 
 should open
in the spectrum of the Dirac fermions. Since the conditions
for the magnetic catalysis are the most favorable at low car-
rier concentrations �or ��0�, in Fig. 4 we present the be-
havior of �xy�B ,
�B�� and �xx�B ,
�B�� for � smaller than
was used to plot Fig. 3. For comparison we plot these con-
ductivities both for 
=0 and for the phenomenological gap
dependence


�B� = c�B − Bc��B − Bc� , �4.23�

where c is some constant. As stated above, Bc=Bc�� ,T�, but
for illustrative purposes we simply choose an arbitrary value
Bc=0.3 T. As one can clearly see, the opening of the gap 

causes the decrease of �xy�B� from the last plateau value
2e2 /h. This tendency can also be understood from Eq. �4.14�.
In the strong field limit the sum over Mn with n�0 does not
contribute and we obtain �for eB�0 and ��0�

�xy = −
e2Nf

4�	
�tanh

� + 
�B�
2T

+ tanh
� − 
�B�

2T
�

→ −
e2Nf

2�	
��� − 
�B��, T → 0. �4.24�

Equation �4.24� shows that when 
�B��� the magnetic ca-
talysis leads to the formation of a new insulating phase. On
the other hand, we observe in Fig. 4�a� that �xx�B� increases
as the gap opens, while the increase of the diagonal resistiv-
ity �Fig. 4�b�� also indicates that the system goes towards an
insulating phase.

In our consideration we assumed that the opening of the
gap 
 does not affect the chemical potential �. We will come
back to this important issue in Sec. V B.

V. HALL ANGLE AND NERNST COEFFICIENT

The approach presented allows one to calculate other
transport coefficients such as thermal conductivity
"ij�B ,� ,
� �see Refs. 19, 26, and 34, where the diagonal
thermal conductivity is studied� and Peltier �thermoelectric�
conductivity �ij�B ,� ,
� tensors. The calculation of the off-
diagonal coefficients involves some subtleties, because the
conventional Kubo expressions have to be altered46–48 to re-

FIG. 3. �Color online� �a� The Hall conductivity �xy and the
diagonal conductivity �xx measured in e2 /h units as a function of
field B for �=5 K for �=−300 K and T=3 K. �b� The Hall resis-
tivity �xy =−�xy / ��xx

2 +�xy
2 � and the diagonal resistivity �xx

=�xx / ��xx
2 +�xy

2 � measured in h /e2 units as a function of field B for
�=1 K for �=−300 K and T=3 K. We use eB→ �4.5
104 K2�B�T� and assume that 
=0.
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flect the role of magnetization on the electronic thermal
transport in applied field. However, in the low-temperature
limit one may rely on the Sommerfeld expansion and express
the thermoelectric tensor through the conductivity tensor

�ij = −
�2

3

T

e

��ij

��
. �5.1�

The Nernst signal measured in the absence of electric current
is expressed in terms of �ij and �ij as

ey�T,B� � −
Ey

�xT
=
�xx�xy − �xy�xx

�xx
2 + �xy

2 . �5.2�

Since in the low-temperature limit Eq. �5.1� is valid, the
Nernst signal �5.2� can be found differentiating the Hall
angle

#H = arctan
�xy

�xx
�5.3�

via the relation

ey�T,B� = −
�2

3

T

e

�#H

��
. �5.4�

Here based on the results derived in the previous sections,
we will study the behavior of the Hall angle and Nernst
coefficient.

A. Drude-Zener �eB�vF
2 /c™�2™�2 and

T™ ���™��eB�vF
2 /c™� limits

In the classical limit �see Sec. IV A� �xy and �xx are given
by Eqs. �4.6� and �4.4�, respectively. Hence

#H � tan#H = − �c� sgn�eB�sgn � = −
vF

2eB

2c��
. �5.5�

The Hall angle �4.6� diverges at �→0, but one should con-
sider only finite values of �, because it is derived under the
assumption eBvF

2 /c��2��2. Accordingly when � is
small, Eq. �4.6� is valid only for very low fields B. When the
character of the carriers changes from holelike ���0� to
electronlike ���0�, the Hall angle also changes from posi-
tive to negative. The behavior of the Nernst signal

ey = −
�2

3

kB
2TvF

2B

2c��2 �5.6�

mirrors the divergence of the Hall angle at �→0, but ey
�0 irrespective of the sign of �. �Boltzmann constant kB is
restored in Eq. �5.6�.� Equations �5.5� and �5.6� agree with
the results obtained in Ref. 49 using Boltzmann theory. This
is not surprising, because this is exactly the limit described
by Drude-Zener theory. We note that although in Ref. 49 the
so-called d-density-wave state is considered, a direct com-
parison with our case is possible, because the effective low-
energy Dirac theory turns out to be the same.26

Since in the regime T� ���eBvF
2 /c�� the conduc-

tivities �xx and �xy are given by Eqs. �4.12� and �4.11�, re-
spectively, for the Hall angle one obtains

#H = −
4vF

2eB�

3c�3 . �5.7�

Hence the Nernst signal is positive and given by

ey �
4�2

9

kB
2TvF

2B

c�3 . �5.8�

The Nernst signal �5.8� can be very large in a clean system
because ey ��3.49 This regime is accessible due to the fact
that ��0, i.e., one may consider the large and positive
Nernst signal as another fingerprint of the Dirac quasiparti-
cles. We mention that since the Dirac quasiparticles emerge
in the scenarios with unconventional charge density waves
�UCDW�,23,50 in Ref. 50 the large and positive ey is regarded
as a hallmark of UCDW.

FIG. 4. �Color online� The Hall conductivity �xy and the diag-
onal conductivity �xx measured in e2 /h units as a function of field B
for �=6 K for �=25 K and T=3 K. The dash-dotted �black� and
dotted �green� lines are calculated using 
�B� given by Eq. �4.23�.
�b� The Hall resistivity �xy and the diagonal resistivity �xx measured
in h /e2 units as a function of field B for �=6 K for �=25 K and
T=3 K. The dash-dotted �black� and dotted �green� lines are calcu-
lated using 
�B� given by Eq. �4.23�. We use eB→ �4.5
104 K2�B�T�.
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B. Illustrations of analytical results and detection of the
gap � from the Hall angle measurements

In Figs. 5 and 6 we present the dependence of the Hall
angle �5.3� on � for two different values of the field B. The
case of small B shown in Fig. 5 agrees with the analytical
expressions discussed above. Indeed when � decreases,
there is an increase of #H �cf. Eq. �5.5�� followed by the
regime where #H crosses zero �cf. Eq. �5.7��.

In Figs. 7 and 8 we show the behavior of the Nernst
signal. When � is large and B is small, ey�0 and rather
small. However, when � decreases, ey becomes positive
and large ��100 �V/K� in accord with Eq. �5.8�. When the
field B increases, the value ey��=0� becomes even larger and
for finite � there are oscillations of ey���.

Analyzing Figs. 5–8 one may discover another interesting
property, viz., in the presence of a nonzero gap 
 the depen-
dence #H�� ,
� in Figs. 5 and 6 near ��0 is not so steep as
compared to the 
=0 case. Accordingly this feature is re-
flected in the Nernst signal, so that a finite 
 also shows up
in the dependence ey�� ,
� as a dip. Thus we suggest that
careful study of the Hall angle #H�� ,
� and Nernst signal

ey�� ,
� may help to establish the presence of a nonzero gap

 in graphene.

It is important, however, to stress that the gap is detect-
able only if its opening does not change the chemical poten-
tial �. The situation is exactly the same as in Ref. 26, where
we considered the possibility of detecting the gap using pre-
cise measurements of the period of the quantum magnetic
oscillations �de Haas van Alphen or Shubnikov de Haas�. In
the clean system with a fixed carrier density �, the chemical
potential � is given by the number equation �C6�. The open-
ing of the gap 
 results in the adjustment of �, so that the
gap cannot be detected neither from the period of the
oscillations26 nor from the Hall angle. Nevertheless, the ob-
servation of the quantum Hall effect7,8 shows that there is
localization and the chemical potential remains fixed making
the gap detection possible.

Finally we stress that here we neglected the dependence
of ����, while a simple argument given at the end of Sec.
IV A shows that this carrier concentration dependence is
rather important.

FIG. 5. �Color online� The Hall angle #H as a function of
chemical potential � for two different values of 
 for B=10−4 T,
T=3 K, and �=1 K. We use eB→ �4.5104 K2�B�T�.

FIG. 6. �Color online� The Hall angle #H as a function of
chemical potential � for two different values of 
 for B=3 T, T
=3 K, and �=1 K. We use eB→ �4.5104 K2�B�T�.

FIG. 7. �Color online� The Nernst signal ey in �V/K as a func-
tion of chemical potential � for two different values of B for T
=1 K, �=4 K, and 
=0 K. We use eB→ �4.5104 K2�B�T�.

FIG. 8. �Color online� The Nernst signal ey in �V/K as a func-
tion of chemical potential � for two different values of B for T
=1 K, �=4 K, and 
=15 K. We use eB→ �4.5104 K2�B�T�.
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VI. CONCLUSIONS

In this paper we have studied the dc Hall conductivity,
Hall angle, and Nernst signal in a planar system with rela-
tivistic Dirac-like spectrum of quasiparticle excitations. We
also presented the results for the diagonal optical conductiv-
ity in the external magnetic field perpendicular to the plane.

Our main results can be summarized as follows.
�1� We have obtained analytical expressions for the diag-

onal optical conductivity �xx�� ,� ,B ,T ,
� �Eq. �3.8�� and
the off-diagonal optical conductivity �xy�� ,� ,B ,T ,
� �Eq.
�3.9��.

�2� We have derived the analytical expression �3.14� with
the kernel �3.15� for the dc Hall conductivity �xy�� ,B ,T ,
�
which includes an arbitrary impurity scattering rate ���� that
was assumed to be independent of the Landau level index n.

�3� We have shown that in the classical limit our expres-
sion for dc Hall conductivity Eq. �3.14� reduces to the con-
ventional Drude-Zener formula �4.6�.

�4� The direct comparison of the expression �4.16� derived
in Ref. 38 for Hall conductivity in a two-dimensional elec-
tron gas with the corresponding representation �4.15� for
graphene allows one to understand the origin of the odd in-
teger Hall quantization Eq. �1.1� in graphene in terms of the
difference between the energies and degeneracies of the Lan-
dau levels in these systems.

�5� In Sec. IV C we presented the arguments �using the
second quantization formalism� that the nontrivial Berry’s
phase in graphene is associated with the anomalous proper-
ties of the zero modes or the quasiparticles from the lowest
Landau level.

�6� We have investigated the behavior of the Hall angle
and the Nernst signal showing that for ��0 there is an
interesting regime �see Eq. �5.8�� where the Nernst signal is
strong and positive.

�7� On the basis of the results obtained, we have discussed
in Secs. IV E and V B the possibility of detecting a gap 

that may open in the spectrum of the Dirac-like quasiparticle
excitations of graphene due to a nontrivial interaction be-
tween them.

All our results are derived for noninteracting quasiparti-
cles treating the impurity scattering rate ���� as a phenom-
enological parameter and without considering the interaction
with impurities that would demand solving an equation for

��� ,�� �see Ref. 32�. Accordingly we did not consider the
problems related to localization and a full explanation of the
IQHE �see Refs. 40 and 51�. These problems by themselves
acquire a new depth and deserve a separate study. For ex-
ample, it is pointed out in Ref. 7 that localization effects in
graphene are suppressed. Interestingly, it is shown in Ref. 37
that for long-range impurities the weak-localization correc-
tion makes a positive contribution to the conductivity �xx.
This antilocalization property is related in Ref. 37 to the
Berry’s phase of the Dirac fermions. Definitely, such effects
were not considered in the present work. Nevertheless we
hope that the approach presented here allows one to explain
in the most transparent way the difference between the Dirac
quasiparticles in graphene and nonrelativistic quasiparticles
in conventional semiconductors when these systems are
placed in a magnetic field.
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APPENDIX A: CALCULATION OF �ij„�…

The most efficient way of calculating �ij��� is to again
use the spectral representation equation �3.5� �for �=0�. This
allows one to eliminate one of the integrations over fre-
quency in Eq. �3.7�, so that for the real part of the conduc-
tivity �3.1� we obtain

�ij��� =
e2vF

2

2��
Re �

−�

�

d�� d2k

�2��2 tr��nF��� − nF�� +���

�iSR�� +�,k�� jSA��,k� − nF����iSR�� +�,k�

� jSR��,k� + nF�� +��

�iSA�� +�,k�� jSA��,k�� . �A1�

Using the expressions Eq. �2.7� for the advanced and re-
tarded Green’s functions we obtain

�ij��� =
e2vF

2

2��
Re �

−�

�

d�� d2k

�2��2e−ck2/eB �
n,m=0

�

�− 1�n+mtr��nF��� − nF�� +���


�iSn

R�� +��� jSm
A���

��� +� + i��� +���2 − Mn
2���� − i�����2 − Mm

2 �
− nF���

�iSn
R�� +��� jSm

R���
��� +� + i��� +���2 − Mn

2���� + i�����2 − Mm
2 �

+ nF�� +��
�iSn

A�� +��� jSm
A���

��� +� − i��� +���2 − Mn
2���� − i�����2 − Mm

2 �� , �A2�

where Sn
�R,A� are the numerators of Eq. �2.7� obtained from Eq. �2.6� for Sn�i�n ,k� via the rule Sn

�R,A��� ,k�=Sn�i�n
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→�± i�����. This allows one to include the frequency dependent impurity scattering rate, ����. The traces in Eq. �A2� are
easily evaluated

tr��iSn
�R,A������ jSm

�R,A����� = − 8Nf���� ± i����� ± i�� − 
2���ij�Ln�x�Lm−1�x� + Ln−1�x�Lm�x��

+ i$ij sgn�eB��Ln�x�Lm−1�x� − Ln−1�x�Lm�x��� − 64Nf�2kikj − �ijk
2�Ln−1

1 �x�Lm−1
1 �x� , �A3�

where $ij is antisymmetric tensor �$12=1� and the argument of the Laguerre polynomials is x=2ck2 / eB. Integrating over
momenta we obtain

�ij��� =
e2vF

2 eBNf

2�2c�
Re �

n,m=0

�

�− 1�n+m+1��ij��n,m−1 + �n−1,m� + i$ij sgn�eB���n,m−1 − �n−1,m��

�
−�

�

d�� �nF��� − nF��������� + i����� − i�� − 
2�
���� + i���2 − Mn

2���� − i��2 − Mm
2 �

−
nF������� + i����� + i�� − 
2�

���� + i���2 − Mn
2���� + i��2 − Mm

2 �

+
nF�������� − i����� − i�� − 
2�

���� − i���2 − Mn
2���� − i��2 − Mm

2 �� . �A4�

The Kronnecker’s delta symbols appearing in Eq. �A4� are due to the orthogonality relation for the Laguerre polynomials,

�
0

�

dxe−xx�Lm
��x�Ln

��x� =
��n + � + 1�

n!
�mn, �A5�

show that only transitions between neighboring landau levels contribute in the conductivity. The last term of Eq. �A3� vanished
after the angular integration. The real part of Eq. �A4� reads

�ij��� =
e2vF

2 eBNf

2�2c�
�

n,m=0

�

�− 1�n+m+1�
−�

�

d�ˆ�ij��n,m−1 + �n−1,m��nF��� − nF�����Re��n,m
1 ��,��� −�n,m

2 ��,����

− $ij sgn�eB���n,m−1 − �n−1,m���nF��� − nF�����Im�n,m
1 ��,��� − �nF��� + nF�����Im�n,m

2 ��,����‰ , �A6�

where we introduced

�n,m
1 ��,��� =

��� + i����� − i�� − 
2

���� + i���2 − Mn
2���� − i��2 − Mm

2 �
,

�n,m
2 ��,��� =

��� + i����� + i�� − 
2

���� + i���2 − Mn
2���� + i��2 − Mm

2 �
. �A7�

When we derived Eq. �A6� we used the fact that the real part of �n,m
1,2 does not alter when the simultaneous replacements

i�→−i� and i��→−i�� are made, while its imaginary part reverses sign. These features of �ij��� are also used below when
Eqs. �3.8� and �3.9� are written in the symmetric form. The sum over m in Eq. �A6� is easily calculated using Kronnecker
delta’s,

�ij��� =
e2vF

2 eBNf

2�2c�
�
n=0

� �
−�

�

d�ˆ�ij�nF��� − nF�����Re��n,n+1
1 ��,��� +�n+1,n

1 ��,��� −�n,n+1
2 ��,��� −�n+1,n

2 ��,����

− $ij sgn�eB���nF��� − nF�����Im��n,n+1
1 ��,��� −�n+1,n

1 ��,����

− �nF��� + nF�����Im��n,n+1
2 ��,��� −�n+1,n

2 ��,�����‰ . �A8�

Further summation over n can be performed expanding �1,2 in terms of the partial fractions,

�n,m
1 ��,��� =

��� + i����� − i�� − 
2

�� − �� − i�� + ������ + �� − i�� − ���� + 2B�n − m�� 1

��� + i���2 − Mn
2 −

1

�� − i��2 − Mm
2 � ,

�n,m
2 ��,��� =

��� + i����� + i�� − 
2

�� − �� + i�� − ������ + �� + i�� + ���� + 2B�n − m�� 1

��� + i���2 − Mn
2 −

1

�� + i��2 − Mm
2 � , �A9�
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where for brevity we introduced the notation B�vF
2 eB /c.

The resulting sums are expressed via the digamma function
by means of the formula

�
n=0

� � A

n + a
+

B

n + b
+

C

n + c
+

D

n + d
�

= − �A��a� + B��b� + C��c� + D��d�� , �A10�

where for convergence A+B+C+D=0, so that we arrive at
the final expressions for the conductivities �3.8� and �3.9�. In
the limit of vanishing magnetic field the Hall conductivity
becomes zero, while for the longitudinal conductivity we ob-
tain

�xx��� =
e2Nf

2�2�
Re �

−�

�

d��nF��� − nF�� +���

�	 �� + i����� + i��� − 
2

�� − �� + i�� − ������ + �� + i�� + ����

−
�� + i����� − i��� − 
2

�� − �� + i�� + ������ + �� + i�� − ����



ln�
2 − �� + i��2� + ��↔ ��,�↔ ���� .

�A11�

Calculating the real part we can represent the last expression
in the form

�xx��� =
e2Nf

2�2 �
−�

�

d��nF��� − nF�� +��
�

�AL��,�,�,
� ,

�A12�

where

AL��,�,�,
� =
1

D��,���
�a ln

�
2 + ��2 − ��2�2 + 4��2��2

�
2 + �2 − �2�2 + 4�2�2

+ b arctan
2��


2 + �2 − �2

+ c arctan
2����


2 + ��2 − ��2� , �A13�

and

D��,��� = ��� − ���2 + �� − ���2���� + ���2 + �� − ���2�

��� − ���2 + �� + ���2���� + ���2 + �� + ���2� ,

a = �������2 − �2 + ��2 − �2�����2 + �2 + ��2 + �2�2

+ 4���2�2 − ��2�2�� − 8
2������2 − �2 − ��2 + �2�� ,

b = 2�������2 + �2 + ��2 + �2�����2 − �2�2 + ���2 − �2�2

+ 2���2 + �2����2 + �2� − 8��2�2� − 2
2��������2

− �2�2 + ���2 − �2�2 + 2���2 + �2����2 + �2� − 8�2�2�� ,

c = 2�������2 + �2 + ��2 + �2�����2 − �2�2 + ���2 − �2�2

+ 2���2 + �2����2 + �2� − 8�2��2� − 2
2������2 − �2�2

+ ���2 − �2�2 + 2���2 + �2����2 + �2� − 8��2��2�� .

�A14�

For 
=0 these expressions are simplified:

a = ������2 − �2 + ��2 − �2�����2 + �2 + ��2 + �2�2

+ 4���2�2 − ��2�2�� ,

b = 2�������2 + �2 + ��2 + �2�����2 − �2�2 + ���2 − �2�2

+ 2���2 + �2����2 + �2� − 8��2�2�� ,

c = 2�������2 + �2 + ��2 + �2�����2 − �2�2 + ���2 − �2�2

+ 2���2 + �2����2 + �2� − 8�2��2�� . �A15�

The behavior of �xx��� in this limit was studied in Ref. 52
for graphene and in Ref. 53 for a d-wave superconductor. For
B=0 the latter is rather similar to graphene at �=0.

APPENDIX B: DERIVATION OF THE HALL
CONDUCTIVITY IN THE CLEAN LIMIT FROM EQ. (3.14)

Equation �4.14� can be obtained directly from Eq. �3.14�.
Indeed taking the limit �→0, we find from Eq. �3.15� that

AH��,B,�,
� =
1

2�2�arctan
2��


2 + �2 − �2

− 2 Im ln �	
2 + �2 − �2 − 2i��

B

�,

�→ 0. �B1�

Recall that here B is a short-hand notation for vF
2 eB /c. We

begin with the expression

Im ln �	
2 + �2 − �2 − 2i��

2B



= sgn � Im ln �	
2 + �2 − �2 − 2i��
2B



= sgn � Im ln �	
2 + �2 − �2 − 2i��

2B



���
2 + �2 − �2� + ���2 − 
2 − �2�� . �B2�

Now we use the relationship

��z���− z� =
�

z sin�− �z�
�B3�

to rewrite the last expression in the form
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Im ln �	
2 + �2 − �2 − 2i��

2B



= − sgn ��Im ln �	 �2 − 
2 − �2 + 2i��
2B



+ ���2 − 
2 − �2��� − arctan

2��
�2 − 
2 − �2

+ Im ln sin	��2 − 
2 − �2 + 2i��
2B


�� . �B4�

Hence

AH��,B,�,
�

=
sgn �

2�2 �arctan
2��

�2 − 
2 − �2

+ 2 Im ln �	 �2 − 
2 − �2 + 2i��
2B



− ���2 − 
2 − �2�

�� − 2 Im ln sin	��2 − 
2 − �2 + 2i��
2B


�� .

�B5�

Now using the formula

Im ln sin�a + ib� =
�

2
− a − �

k=1

�
1

k
sin�2ka�e−2kb, b� 0,

�B6�

we arrive at the following representation:

AH��,B,�,
�

=
sgn �

2�2 �arctan
2��

�2 − 
2 − �2

+ 2 Im ln �	 �2 − 
2 − �2 + 2i��
2B



− ����2 − 
2 − �2���2 − 
2 − �2

B

+ 2�
k=1

�
1

�k
sin	2�k

�2 − 
2 − �2

2B

e−2k��/B�� .

�B7�

Finally by means of the identity �4.6� of Ref. 18, we obtain
in the limit �→0 that

AH��,B,�,
�

= −
1

2�
sgn ����2 − 
2�

��2 − 
2

B
+ 2�

k=1

�
1

�k
sin	2�k

�2 − 
2

2B

�

= −
1

2�
sgn �����2 − 
2� + 2�

n=1

�

���2 − 
2 − 2Bn�� .

�B8�

Inserting the last expression in Eq. �3.14� and integrating
over � we finally arrive at Eq. �4.14�.

APPENDIX C: THE EQUATION FOR CHEMICAL
POTENTIAL

To derive the relationship for the carrier imbalance � ��
�ne−nh, where ne and nh are the densities of “electrons” and
“holes,” respectively� and the chemical potential �, we begin
with the well-known expression

� = tr��0S̃��,0��, �→ 0, �C1�

where S̃�� ,r� is the translation invariant part of the Green’s
function �2.3�. Taking its Fourier transform and using the
spectral representation �3.5�, we arrive at

� = T �
n=−�

� � d2k

�2��2�
−�

�

d�
tr��0A��,k��
i�n + � − �

. �C2�

After evaluating the sum over Matsubara frequencies we ob-
tain

� = −
1

2
� d2k

�2��2�
−�

�

d� tanh
� − �

2T
tr��0A��,k�� .

�C3�

Now taking into account that tr��0A�� ,k�� is an even func-
tion of �, we may write

� =
1

2
� d2k

�2��2�
0

�

d��tanh
� + �

2T
− tanh

� − �

2T
�

tr��0A��,k��

=� d2k

�2��2�
0

�

d��nF�� − �� − nF�� + ���

tr��0A��,k�� . �C4�

Substituting the spectral function �3.6� in the first line of the
last equation and integrating over momenta, we arrive at

� =
NfeB
4�2c

�
n=0

�

�n�
−�

�

d� tanh
� + �

2T
	 �

�� − Mn�2 + �2

+ ��→ − ��
, �0 = 1, �n = 2, n� 1. �C5�

The ratio �n /�0=2 for n�1 is related to the above-
mentioned smaller degeneracy of the n=0 Landau level. It is
easy to see that Eq. �C5� in the limit �=0 reduces to
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� =
NfeB
4�c �tanh

� + 


2T
+ tanh

� − 


2T

+ 2�
n=1

� 	tanh
� + Mn

2T
+ tanh

� − Mn

2T

� , �C6�

while in the limit B=�=T=
=0 it reduces to Eq. �4.7� �see,
for example, Eq. �77� in Ref. 25� giving the relationship
between the chemical potential and the free carrier imbal-
ance.

Comparing Eq. �C6� with Eq. �4.14� we finally obtain that
in the ideally clean system �see also Ref. 25�

�xy = −
ec�

B
. �C7�

The last expression seems to be paradoxical at first glance,
because it corresponds to the classical expression �4.8� far
beyond the validity of the classical limit �see Sec. IV A�.
Nevertheless this result is absolutely correct and it shows the
consistency of our calculation. As explained in Ref. 54, Eq.
�C7� is expected for an ideal conductor. This similarity be-
tween Eq. �C6� and Eq. �4.14� was exploited in Ref. 44,
where instead of calculating the electrical conductivity �xy,
the density �C6� was obtained. However, to consider the
IQHE one must take into account the presence of
impurities.40,51,54 It is believed that they lead to the localiza-
tion of most of the bulk states, except in a region around the
center of the Landau band, and act as a reservoir which al-
most fixes the chemical potential.40,51 It turns out that in this
more physical situation it still makes sense to rely on Eq.
�4.14� for �xy, while Eq. �C6� cannot be used in the IQHE
regime. One particular model of the equation for � that in-
cludes the reservoir could be a generalization of the one dis-
cussed in Ref. 55 for nonrelativistic quasiparticles.

The main implication of this model is that the density of
the delocalized carriers in the Hall bar may oscillate as the
field B varies. It seems the oscillations of this kind were
indeed observed in the IQHE system.56 However, there is no
consensus on a microscopic picture of the localization in the
quantum Hall effect �see, e.g., Refs. 57–59� even in 2D elec-
tron gas. On the other hand, the localization of the Dirac
quasiparticles appears to be quite different from the localiza-
tion in 2D electron gas with the parabolic dispersion.7 This
indicates that further studies of the localization and oscilla-
tions of the density of the delocalized carriers in graphene
may be very useful.

APPENDIX D: SOLUTION OF THE DIRAC EQUATION
IN THE SYMMETRIC GAUGE

The Dirac equation in the problem of a relativistic fer-
mion in a constant magnetic field B takes the following form
in �2+1� dimensions:

�i�̃0	�t + ivF�̃
1		�x + i

e

c
Ax

ext
 + ivF�̃
2		�y + i

e

c
Ay

ext
 − 
�
��t,r� = 0, �D1�

where the vector potential Aext= �−By /2 ,Bx /2�, so that the

magnetic field B=�Aext is directed along the positive z
axis. In �2+1� dimensions, there are two inequivalent repre-
sentations of the Dirac algebra �see, e.g., Ref. 60�:

�̃0 = �3, �̃1 = i�1, �̃2 = i�2 �D2�

and

�̃0 = − �3, �̃1 = − i�1, �̃2 = − i�2, �D3�

which correspond to right- and left-handed coordinate sys-
tems. Here �i are Pauli matrices. The representation of
gamma matrices ��3 , i�2 ,−i�1� used to write the Lagrangian
�2.1� is related to the representation ��3 , i�1 , i�2� by means

of the unitary transformation U= �Î+ i�3� /�2. Although the
final results of the calculations do not depend on either the
representation of �-matrices or the gauge, the intermediate
expressions depend on this choice.

Since the representation �D2� and �D3�, is more com-
monly used in the literature, in this Appendix we solve the
Dirac equation �D1� and obtain the operator �4.21� using this
representation.

Let us begin by considering the representation �D2�. The
energy spectrum in the problem �D1� depends on the sign of
eB; let us for definiteness assume that eB�0. Then, the en-
ergy spectrum takes the form �to be concrete, we assume also
that 
�0�

E0 = − M0 = − 
 ,

En = ± Mn = ± �
2 + 2neB	vF
2/c, n = 1,2, . . . �D4�

�the Landau levels�. The general solution is

��x� = �
n,m

�anmunm�x� + bnm
+ vnm�x�� , �D5�

where

unm =
1

l�2�
exp�− iMnt�

1
�2Mn

	�Mn + 
Jm−1
n−m�%�ei�m−1��

�Mn − 
Jm
n−m�%�eim� 
, n� 1, m n ,

v0m =
1

l�2�
exp�iM0t�	 0

Jm
−m�%�eim� 
, n = 0, m 0,

vnm =
1

l�2�
exp�iMnt�

1
�2Mn

	− �Mn − 
Jm−1
n−m�%�ei�m−1��

�Mn + 
Jm
n−m�%�eim� 
, n� 1, m n .

�D6�

Here the functions61

J�
n�%� = � n!

�n + ��!�1/2

e−%/2%�/2Ln
��%� ,
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Jm
−m�%� =

�− 1�m

��− m�!
e−%/2%−m/2 �m 0� , �D7�

where Ln
m�%� are Laguerre polynomials �Ln

m�%��0 for n
 −1�, l��	c / eB�1/2 is the magnetic length, %=r2 /2l2, the
quantum number m n reflects the degeneracy of each level
in the angular momentum. The spinors unm and vnm are nor-
malized as follows:

� d2xun�m�
† �x�unm�x� =� d2xvn�m�

† �x�vnm�x� = �n�,n�m�,m.

�D8�

Thus the lowest Landau level with n=0 is special: while at
n�1, there are solutions corresponding to both fermion
�En=Mn� and antifermion �En=−Mn� states, the solution with
n=0 describes only antifermion states.

If we used the representation �D3� for Dirac’s matrices,
the general solution would be given by Eq. �D5� with unm�x�,
vnm�x� being substituted by vnm�−x� ,unm�−x�:

��x� = �
n,m

�cnmvnm�− x� + dnm
† unm�− x�� . �D9�

The solution v0m corresponds to the Landau level n=0 with
positive energy E0=
, while the solutions vnm ,unm with n
�1 correspond to the energy eigenvalues En= ±Mn �com-
pare with Eq. �D4��. Accordingly, when the spectra for two
inequivalent representations are united together the degen-
eracy of the n=0 level turns out to be a half of the degen-
eracy of the levels with n�1. The four-component spinor �
is composed from two two-component spinors Eqs. �D5� and
�D9� and using it one can obtain the expression �4.21� for the
pseudospin rotation generator.
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