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Chapter 1

Introduction

The contact between a superconductor (S) and a ferromagnet (F) leads to a non-
trivial proximity effect due to the exchange field of the ferromagnet. This leads
to a non-trivial effect in the electronic ground state. A particular interesting sys-
tem is the superconducting spin valve, which consists of a superconducting layer
sandwiched between two ferromagnet layers. The ground state of a ferromag-
net has the spins of all electrons aligned. The ground state of a superconductor
has its electrons bound in Cooper pairs consisting of two electrons with oppo-
site momenta and spins. Thus the two materials have different types of order.
They influence each other via the proximity effect. Cooper pairs can leak from
the superconductor into the ferromagnet by Andreev reflection, causing super-
conducting properties in the ferromagnet and a decrease of the superconducting
properties in the superconductor. The Andreev reflection will be described in
section 4.1.
In an F/S/F spin valve it is possible to control the superconductivity in the S
layer by manipulating the relative magnetic orientation of the F layers. It was
predicted theoretically by Tagirov [1] and Buzdin [2] that, if a weak ferromagnet
is used, a parallel (P) configuration of the F layers gives a larger suppression of
the Tc (critical temperature) of the superconductor than an antiparallel (AP)
orientation. They assumed homogeneously magnetized F layers, without domain
walls or other defects. In practice such a sample is difficult to fabricate, it will
always contain some domains and domain walls. The presence of domain walls
will influence the superconductor; they cause local inhomogeneity because the
direction of the magnetization at both sides of the domain wall is different. This
leads to less suppression of the superconductivity. But a domain wall also causes
flux to penetrate the superconductor which can suppress the superconductivity
more.
Gu et al.[3] provided experimental evidence which showed that Tc(AP)>Tc(P)
for an F/S/F structure with weak ferromagnets, as expected from theory. For
strong ferromagnets no theory is available. Rusanov et al. showed that the strong
ferromagnet they have used yield the opposite effect (Tc(AP)<Tc(P))[4].
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In this report measurements are presented on F/S/F structures where F is in
this case Ni80Fe20 (Py) and Nb was used as superconductor. Py is a strong fer-
romagnet, Eex is approximately 270 meV and it is 45% spin polarized [5]. The
effects are only visible if the S layer is thin, in the order of the superconducting
coherence length. We used thicknesses from 15 to 70 nm. To control the P and
AP states we made use of the thickness dependence of the coercive field of the
Py layers. The used Py thicknesses were 20 nm and 50 nm, Py layers with these
thicknesses behave still like bulk samples and therefore we expect that 20 and
50 nm layers have the same properties except for the coercive field. The samples
were structured in strips to exclude the effects of domain walls as much as pos-
sible. The width of the sample strip is ∼1 µm to be nearly single domain. The
length is ∼40 µm. Resistance was measured as function of temperature (RT) in
different fields, applied field (RH) at different temperatures and current (IV) at
different fields and temperatures.

Outline of the report Chapter 2 describes the theory involving superconduc-
tivity. Chapter 3 is used for the theory needed for the description of ferromag-
netism and chapter 4 for the proximity effect in S/N, S/F and F/S/F structures.
Chapter 5 contains the experimental methods and the results are presented in
chapter 6. The conclusion will be drawn in chapter 7. The details of sample
preparation and sample dimensions are given in appendices A and B respectively.
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Chapter 2

Superconductivity

In 1935, before the actual microscopic mechanism of superconductivity was dis-
covered, the brothers F. and H. London proposed two phenomenological equations
similar to the Maxwell equations to describe the behavior of a superconductor [6].
They are like the Maxwell equations in the sense that they describe the micro-
scopic electric ~E and magnetic ~h fields inside the superconductor. The equations
are:

~E =
∂

∂t
(Λ~Js) (2.1)

~h = −∇× (Λ~Js) (2.2)

where
Λ = µ0λ

2 =
m

nse2
(2.3)

with Λ a phenomenological parameter, λ the penetration depth (to be explained
below), ns the density of superconducting electrons, m the electron mass and e

its charge. ~Js is the supercurrent density. It was thought that not all electrons
are superconducting, but only a certain fraction. This fraction would vary con-
tinuously from zero at Tc, the transition temperature, to a limiting value of the
order of n, the density of conduction electrons, far below Tc. The first London
equation describes perfect conductivity. The electric field is accelerating the elec-
trons continuously instead of sustaining their velocity against resistance. The
second equation describes the screening of the magnetic field. It implies that a
magnetic field is exponentially screened from the interior of the superconductor
with a characteristic length scale λ, the penetration depth. The temperature
dependence of λ is empirically described by

λ(T ) ≈ λ(0)(1− (T/Tc)
4)−1/2 (2.4)

with

λ(0) =

(
m

µ0nse2

)1/2

(2.5)
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To improve this, a non-local generalization was introduced. In analogy with
the idea of non-locality in electrodynamics (the current at a point depends on
the electric field around that point) Pippard introduced another characteristic
length scale ξ0, the coherence length. The coherence length takes care of the fact
that a superconducting wavefunction is not local. The definition of the coherence
length was

ξ0 = a
~vF
kBTc

(2.6)

with vF the Fermi velocity and a a numerical constant of order unity. The exact
value of a is found by BCS theory to be 0.18.
The ability of a supercurrent to screen magnetic fields is finite and superconduc-
tivity is destroyed above a critical field Hc. If a field higher than Hc is applied, the
sample is not superconducting anymore. Hc is also dependent on temperature.
Exactly at Tc, Hc is in fact 0 and it reaches a finite field at 0 K. Also Ic exists,
the critical (depairing) current. Above a certain current the superconductivity is
destroyed and normal resistance appears.

2.1 BCS theory

In 1957 Bardeen,Cooper and Schrieffer (BCS) published their microscopic theory
of superconductivity. They continued the ideas of Cooper that any attractive in-
teraction between electrons can lead to superconducting properties. Even a weak
attractive interaction can cause electrons to form bound pairs (Cooper pairs).
Only a small amount of electrons in the superconductor are bound in pairs, these
are responsible for the superconductivity, short-circuiting the remaining electrons
which still have a finite resistance.

2.1.1 Cooper pairs

In 1956 Cooper showed that a Fermi sea is not stable against the formation of
at least one bound pair of electrons. The electrons are bound by an attractive
interaction, which can be very weak, every net attractive interaction will form
a pair. Cooper considered a entirely filled Fermi sea at T = 0 and added two
more electrons. He considered what energy is needed to do this. In a normal free
electron model the energy of the two electrons would be higher than 2EF , the
Fermi energy of two electrons. If the energy is lower than 2EF the system can
save energy by binding its electrons in pairs. If a net attraction exists, electron
pairs with E < 2EF appear. The density of these bound states strongly depends
on the total momentum ~k of the pair with a maximum when ~k = 0. The energy
of the pair is now

E ≈ 2EF − 2~ωce−2/N(0)V (2.7)

6



where ~ωc is a cut off energy, N(0) is the density of states at the Fermi level for
electrons of one spin orientation and V is the interaction potential. Assumed is
that the weak-coupling approximation is applicable, i.e. N(0)V � 1. Equation
2.7 says that the energy of the pair is lower than the Fermi energy if there is an
attractive interaction, no matter how weak it is. This means that the system can
lower its energy by binding electrons in Cooper pairs and the Fermi sea becomes
unstable.
The origin of the attractive potential is not specified and can in principle be every
attractive interaction. In conventional superconductors it is the electron-phonon
interaction. This is confirmed experimentally by the discovery of the isotope
effect. Tc and Hc are proportional to M−1/2 for isotopes of the same element (M
is the isotopic mass).

2.1.2 BCS ground state

BCS continued on this idea by considering how the ground state of such a system
with attractive interactions between the electrons should look like. The BCS
ground state is most easily expressed using the language of second quantization.
Occupied states are specified by the use of creation operators (c†k↑). Annihilation
operators (ck↑) are introduced to empty the state. As Hamiltonian we use the
so-called pairing Hamiltonian or reduced Hamiltonian:

H =
∑
kσ

ξknkσ +
∑
kl

Vklc
†
k↑c

†
−k↓c−l↓cl↑ (2.8)

where only the simplest interactions are included that lead to superconduc-
tivity, omitting many others. Here σ is used for the spin index (↑ or ↓) and ξ is
the energy measured from the Fermi energy. nkσ is the particle number operator.
The first term in the Hamiltonian describes the kinetic energy of the electrons.
The second term is the pairing interaction, as it describes how two electrons with
momentum ~l and −~l are scattered into states with momentum ~k and −~k. Because
of the large number of particles involved it is convenient to decompose the pair
operators in an average and a fluctuation:

c−k↓ck↑ = bk + (c−k↓ck↑ − bk) (2.9)

with

bk = 〈c−k↓ck↑〉av (2.10)

The fluctuation can be assumed to be very small. Equation 2.9 can be substi-
tuted in equation 2.8 and higher order terms in the fluctuation will be neglected
because they are expected to be very small since the fluctuation is already small.
We obtain the following:
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H =
∑
kσ

ξkc
†
kσckσ +

∑
kl

Vkl(c
†
k↑c

†
−k↓bl + b†kc−l↓cl↑ − b†kbl) (2.11)

Defining:

∆k = −
∑

l

Vklbl = −
∑

l

Vkl〈c−l↓cl↑〉 (2.12)

and substituting this in equation 2.11 results in the following Hamiltonian:

H =
∑
kσ

ξkc
†
kσckσ −

∑
k

(∆kc
†
k↑c

†
−k↓ + ∆†

kc−k↓ck↑ −∆kb
†
k) (2.13)

∆ is an important parameter. It is called the superconducting order param-
eter and is a measure for the energy gap between the Cooper pairs and their
excitations (quasiparticles). ∆ is proportional to the number of superconducting
electrons and is thus zero above Tc. Below Tc it has a finite value and reaches
its maximum at T=0. Therefore it can be used as an order parameter.
Sofar everything was done at T=0. At finite temperatures we have to add exci-
tations. But BCS were using single particle operators and the elementary exci-
tations of the system are pairs of electrons with opposite momentum or, equiva-
lently, electron/hole pairs with the same momentum. To make the theory more
useful at finite temperatures, new operators γk and γ†k can be introduced by a
Bogoliubov transformation. These new operators are linear combinations of the
old ones and directly create and annihilate these elementary excitations. The
operators are defined through the relations:

ck↑ = u†kγk0 + vkγ
†
k1 (2.14)

c†−k↓ = −v†kγk0 + ukγ
†
k1 (2.15)

with uk and vk satisfying

|uk|2 + |vk|2 = 1 (2.16)

Using this operators the Hamiltonian can be diagonalized. If these operators
are substituted in equation 2.13, uk and vk have to be chosen such that the un-
desired terms vanish. The Hamiltonian is diagonalized if the following condition
is satisfied:

|vk|2 = 1− |uk|2 =
1

2

(
1− ξk

Ek

)
(2.17)

where

Ek = (ξ2
k + |∆k|2)1/2 (2.18)
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Ek is the energy of the quasi-particle excitations. Equation 2.18 shows that
∆ is indeed an energy gap. Even if ξk = 0 (at the Fermi surface) a minimum
energy ∆ is needed for an excitation. ∆k in terms of excitations is now given by

∆k = −
∑

l

Vkl〈c−l↓cl↑〉 = −
∑

l

Vklu
†
lvl〈1− γ†l0γl0 − γ†l1γl1〉 (2.19)

2.1.3 Finite temperatures

At finite temperatures the distribution of excitations is given by the usual Fermi
function:

f(Ek) = (eβEk + 1)−1 (2.20)

where β = 1/kBT . Substituting this for the excitations in equation 2.19 becomes

〈1− γ†l0γl0 − γ†l1γl1〉 = 1− 2f(El) (2.21)

and so ∆ becomes

∆k = −
∑

l

Vkl
∆l

2El

tanh

(
βEl

2

)
(2.22)

The self-consistency condition becomes (with the BCS approximation Vkl =
−V )

1

V
=

1

2

∑
k

tanh(βEk/2)

Ek

(2.23)

This equation can also be solved to give an equation for Tc:

kBTc = 1.13~ωDe−1/N(0)V (2.24)

where ωD is the Debye frequency. ∆ depends on temperature, it is zero exactly at
Tc and it approaches the value 1.76kBTc at T=0. In fig.2.1 a plot of ∆ is given.

2.1.4 Bogoliubov-de Gennes equations

In the previous sections the superconductor was homogeneous. Difficulties arise
when the superconducting order parameter varies in space, for example at an
interface with another material. In these cases we can use the Bogoliubov-de
Gennes equations.
Because of the spatial variations of the Hamiltonian, the plane wave momentum
eigenfunctions characterized by k which were used in the previous sections can
not be used. They must be replaced by position-dependent functions, which can
be found using a generalization of the Bogoliubov transformations:

Ψ(r ↑) =
∑
n

[γn↑un(r)− γ†n↓v
†
n(r)] (2.25)
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Figure 2.1: Temperature dependence of the energy gap in BCS theory. It holds
for all materials, provided they are in the weak-coupling limit (Figure taken from
ref. [6]).

Ψ(r ↓) =
∑
n

[γn↓un(r)− γ†n↑v
†
n(r)] (2.26)

where the Ψ’s are annihilation operators for position eigenfunctions instead of
momentum eigenfunctions, as the c’s were in the Bogoliubov transformation.
The u’s and v’s are position-dependent eigenfunctions and can be determined by
diagonalizing the Hamiltonian:

H =

∫ (∑
σ

Ψ†(r, σ)

(
1

2m

(
~
i
∇− eA

)2

+ U(r)− µ

)
Ψ(r, σ)

+ ∆(rΨ†((r) ↑)Ψ†((r) ↓) + ∆†(rΨ((r) ↑)Ψ((r) ↓)
)
dr (2.27)

where ∆(r) = V 〈Ψ(r ↑)Ψ(r ↓)〉 = V
∑

n v
†
n(r)un((r))(1 − fn). U(r) includes

electron-electron interactions, electron-ion interactions and any other electro-
static potential. µ is the chemical potential and fn is the Fermi function. The
diagonalization of this Hamiltonian requires that u and v satisfy the following
equations:

H0u(r) + ∆(r)v(r) = Eu(r) (2.28)

−H†
0v(r) + ∆†(r)u(r) = Ev(r) (2.29)

with

H0 =
1

2m

(
~
i
∇− eA

)
+ U(r)− µ (2.30)

These equations are the Bogoliubov-de Gennes equations.
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2.2 Ginzburg-Landau theory

BCS-theory is excellent when dealing with energy gaps which are constant in
space. If not the theory remains valid but becomes very complicated and the more
simple Ginzburg-Landau (GL) theory is more useful. GL-theory was proposed in
1950, 7 years before BCS-theory. Using the fact that the superconducting phase
transition is a second-order phase transition, Ginzburg and Landau introduced a
pseudowavefunction ψ as an order parameter in Landau’s theory of second order
phase transitions. ψ is in general complex:

ψ = |ψ|eiϕ (2.31)

ψ is related to the density of superconducting electrons ns:

ns = |ψ(x)|2 (2.32)

2.2.1 Free energy

GL postulated that the free energy density near Tc can be expanded as:

f = fn0 + α|ψ|2 +
β

2
|ψ|4 +

1

4m

∣∣∣(~
i
∇− 2e ~A

)
ψ
∣∣∣2 +

B2

2µ0

(2.33)

with fn0 the free energy density in the normal state and in zero field, α and β
parameters, m the mass of one electron and e its charge, ~A the vector potential
and B the magnetic induction. The superconductor tends as usual to minimize
its total free energy. The total free energy can be obtained by integrating over
the volume: F =

∫
fd3~r. The fact that the free energy has to be minimal

requires that ∂F = 0. This variational problem can be solved by (standard but
cumbersome) methods and leads to the GL differential equations:

αψ + β|ψ|2ψ +
1

4m

(~
i
∇− 2e ~A

)2

ψ = 0 (2.34)

and

~J =
1

µ0

∇× ~B =
e~

2mi
(ψ†∇ψ − ψ∇ψ†)− 2e2

m
ψ†ψ ~A (2.35)

or

~J =
e

m
|ψ|2(~∇ϕ− 2e ~A) = 2e|ψ|2~vs (2.36)

with ~vs the supercurrent velocity and ~J is the supercurrent density. These differ-
ential equations have to be completed by boundary conditions. A possible choice
is (~

i
∇− 2e ~A

)
ψ
∣∣∣
n

= 0 (2.37)
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This assures that no current is passing through the surface and is appropriate
at an insulating surface. For a metal-superconductor interface this has to be
generalized to: (~

i
∇− 2e ~A

)
ψ
∣∣∣
n

=
i~
b
ψ (2.38)

with b a real constant. b is proportional to 1
∇ψ at the interface. The value of b

depends on the material to which contact is made, it can be very large for normal
metals and approaches zero for a ferromagnet, with normal metals in between.
In fig.2.2 a schematic plot of ψ at an interface can be seen.

Figure 2.2: ψ in the neighborhood of a S/N interface. b is the length to the point
at which ψ would go to zero if it maintained the slope it had at the surface (Figure
taken from ref. [6]).

In GL theory two characteristic length scales occur. The first one is the
penetration depth. The external magnetic field decays exponentially with this
length scale, denoted λeff .

λeff =
1√
2

1

1− t
λL (2.39)

where t = T/Tc and λL is the London penetration depth.
The other length scale is ξ(T ), the characteristic length for variations of ψ.

It is defined by

ξ2(T ) =
~2

4m|α(T )|
(2.40)

It is related to, but not the same as ξ0, the BCS coherence length. The relation
close to Tc is

ξ(T ) = 0.74
ξ0

(1− t)1/2
(2.41)
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for a pure superconductor and

ξ(T ) = 0.855
(ξ0l)

1/2

(1− t)1/2
(2.42)

for a dirty superconductor (l is the mean free path of the electrons). The exact
values for the constants are taken from BCS theory.
Another useful parameter is the dimensionless Ginzburg-Landau parameter κ,
defined as

κ =
λeff (T )

ξ(T )
(2.43)

In the pure and dirty limits it gives the following numerical results:

κ = 0.96
λL(0)

ξ0
(2.44)

for the pure case and

κ = 0.715
λL(0)

l
(2.45)

for the dirty case, again with the numerical values from BCS theory. κ can be
used to distinguish type I and type II superconductors. If κ < 1/

√
2 it is a

type I superconductor and if κ > 1/
√

2 it is a type II superconductor. A type
II superconductor is characterized by two critical fields Hc1 and Hc2. If the
field is below Hc1 or above Hc2 a type II superconductor is not different from
a type I superconductor. Between the two fields flux is able to penetrate the
superconductor, reaching B = µ0H at Hc2. The flux penetrates as an array of
flux tubes, called vortices, each carrying one flux quantum Φ0 = h

2e
.

If one applies a current to a superconducting material with vortices, the vortices
experience a Lorentz force and this gives rise to a resistance. In practice the
vortices are usually somehow pinned and they do not move until a certain critical
current is reached. At this current suddenly a resistance appears.

2.3 More modern approach

Modern theories use Green function to describe superconductivity. Green func-
tions are defined as solution to certain differential equations but can also be used
to describe the theory of superconductivity. The Green function of a normal
particle is defined as

Gαβ = −i
〈
Tt

(
ψα(x)ψ

†
β(x

′)
)〉

st
(2.46)

where α and β are spin indices, ψ†
α(x) and ψα(x

′) are electron creation and
annihilation operators respectively. x and x′ are coordinates (including time)
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and Tt is an operator which orders the operators logically in time. 〈...〉st denotes
a statistical average over all possible paths from x′ to x. Thus this Green function
(creating a particle at x′ and annihilating it at x) describes the movement of a
particle from x′ to x. It gives a probability amplitude for a particle, being at
time t′ and position ~r′, to be found at time t at location ~r. The Green function
has to be complemented by G, the Green function which describes the opposite
movement. G∗ = −G where ∗ denotes complex conjugate. The Cooper pairs are
described by a second type of Green functions, the anomalous Green functions F
and F . They are defined by

Fαβ = −i
〈
Tt

(
ψα(x)ψβ(x

′)
)〉

st
(2.47)

and F ∗ = −F . F creates two particles at x and x′ (Cooper pair) and F annihilates
two particles at x and x′.
It is also possible to write ∆ in terms of Green functions:

∆αβ(x) = −λFαβ(x, x) (2.48)

∆αβ(x) = −λFαβ(x, x) (2.49)

λ is the attractive interaction. If α and β are equal, ∆ has to be zero, because in
the singlet superconductor described here only unequal spins are correlated and
equal spins are not. The anomalous Green function F only describes correlated
particles.
For a system described by the BCS Hamiltonian the equations of motion for the
time-dependent electron operators are

i~∂tψα(x) = Hα(x)ψα(x) + λ
∑

(ψ†
γ(x)ψγ(x))ψα(x) (2.50)

−i~∂tψ†
α(x) = H†

α(x)ψ
†
α(x) + λψ†

α(x)
∑

(ψ†
γ(x)ψγ(x)) (2.51)

where H
(†)
α (x) is the BCS Hamiltonian:

HBCS = −
∑(

ψ†
α(~r)

~2∇2

2m
ψα(~r)

)
+

λ

2

∑(
ψ†
β(~r)ψ

†
α(~r)ψα(~r)ψβ(~r)

)
(2.52)

This equation can now be rewritten to become an equation for the Green functions
of the system. This leads to equations of the form

[~∂τ +H(x)]Gαβ(x, x
′)−

∑
γ

∆αγ(x)F γβ(x, x
′) = ~δ(x− x′)δαβ (2.53)
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τ is the imaginary time, τ = it. Combining all things together results in the
Gor’kov equation (better: equations). These equations for all possible combina-
tions of spin directions can be combined in a single matrix (to save space):

[~∂τ (σ0 ⊗ τ3) +H0(x)(σ0 ⊗ τ0)

− ∆̌(x)]Ǧ(x, x′) = ~δ(x− x′)(σ0 ⊗ τ0) (2.54)

The free space we saved can now be used to explain the notation. H0 is still the
BCS Hamiltonian. Ǧ(x, x′) is the Gor’kov matrix.

Ǧ(x, x′) =

(
Ĝ(x, x′) F̂ (x, x′)

F̂ (x, x′) Ĝ(x, x′)

)

and Ĝ(x, x′) is defined as

Ĝ(x, x′) =

(
G↑↑(x, x

′) G↑↓(x, x
′)

G↓↑(x, x
′) G↓↓(x, x

′)

)

and similar for the other Green functions. ∆̌(x) =

(
0 ∆̂(x)

∆̂(x) 0

)
with ∆̂ =

(
0 ∆↑↓(x)

∆↓↑(x) 0

)
and ∆̂ =

(
0 ∆↑↓(x)

∆↓↑(x) 0

)
The σ-terms

are the Pauli spin matrices: σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
,

σ3 =

(
1 0
0 −1

)
The τ -terms are the same matrices, the only difference is that a

σ-matrix describes simple electron spins and a τ -matrix describes a particle-hole
built quasiparticle.
The Gor’kov equations contain the same information as the original BCS equa-
tions (no approximations are made) and are not easier to solve. In practice certain
approximations have to be made and they can be made because there is a lot of
information in the equations that we do not use. The characteristic length scale
of a superconductor, ξ0, is much larger than the Fermi wavelength and because of
that we can throw away (average out) all features that have a characteristic wave-
length in the order of the Fermi wavelength. So we can simplify the equations by
averaging these oscillations out. This procedure is known as the quasi-classical
approximation. It includes a change in variables (the two separate coordinates
of the two particles are changed into a center-of-mass coordinate and a relative
coordinate) and an integration over the relative coordinate. This results in

−i~ ~vF∂Rǧ + (σ0 ⊗ τ3)~∂τ ǧ + ~∂τ ′ ǧ(σ0 ⊗ τ3)

− ∆̌(~R, τ)ǧ + ǧ∆̌(~R, τ ′) = 0 (2.55)
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where ~vF is the Fermi velocity, ∆̌(~R, τ) =

(
0 ∆̂(~R, τ)

∆̂(~R, τ) 0

)
and

ǧ(~R, ~̂p, τ, τ ′) =

(
ĝ(~R, ~̂p, τ, τ ′) F̂ (~R, ~̂p, τ, τ ′)

F̂ (~R, ~̂p, τ, τ ′) ĝ(~R, ~̂p, τ, τ ′)

)
. The Green functions are now

quasi-classical, which means that they depend on the center-of-mass coordinate
~R and the direction of the momentum (~̂p is a unit vector in the direction of
the momentum) instead of two separate sets of coordinates for each particle. In
general the assumption is that the ↑ and ↓ electrons are in identical spin bands
and thus have identical Fermi velocity. This assumption is wrong in case of a
S/F bilayer where S is the superconductor and F a strong ferromagnet, because
a strong ferromagnet is not supposed to have equal spin bands. However, the
assumption is fulfilled in case of a weak ferromagnet.
If the superconductor is a dirty-limit material a further approximation can be
made. In such material the impurity density is high and the electrons have a
very short mean free path. They scatter very often before dephasing and after
a few collisions they do not remember the initial direction they were going. The
material then becomes isotropic. The superconductor can now be described by
the Usadel equation:

i~D∇(ǧ∇ǧ) = −i~[H, ǧ] (2.56)

D is the diffusion constant, depending on the Fermi velocity and the electron
mean free path, D = 1

3
vF le. H is a matrix which has the electron energy eigen

values on the diagonal and the off-diagonal elements are the terms which represent
the gap.
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Chapter 3

Ferromagnetism

A ferromagnet is a material in which all magnetic moments at the atoms are
aligned in the same direction1 [7]. It has a spontaneous magnetization even in
absence of a magnetic field. At low temperatures, below TCurie, the ferromagnetic
transition temperature, the material has a ferromagnetic ground state. Above
TCurie the ferromagnetism is destroyed and the material shows only paramagnetic
behavior, which means that an external magnetic field will align the magnetic
moments in the same direction as the field. In nature the only elements that
could possibly show ferromagnetic behavior are 3d elements (Sc, Ti, V, etc.) and
4f elements (rare earth metals like Gd). The discussion will be confined to so
called band ferromagnets which Py (permalloy, Ni80Fe20) is, consisting of two 3d
elements.
In such an alloy the ferromagnetism can be described in terms of an exchange
interaction between the electrons. The electrons are divided into two subbands,
one for each spin. The number of spin up electrons n↑ and the number of spin
down electrons n↓ is not equal. The kinetic energies of electrons at the Fermi
energy of the two subbands are given by (n↑ > n↓)

Ekin
F↑ = EF,N + δE (3.1)

Ekin
F↓ = EF,N − δE ′ (3.2)

EF,N is the energy without exchange interaction. δE and δE ′ are the energy
differences due to the exchange interaction. They are not necessarily equal. The
total kinetic energy of the electrons is now higher than when the subbands are
equally occupied. But this is balanced by the exchange interaction which lowers
the total energy. For ferromagnetism to occur the following criterion has to be
fulfilled:

Ug(EF ) ≥ 1 (3.3)

the so called Stoner criterion. U is a measure for the strength of the exchange
interaction and g(EF ) is the density of states at the Fermi energy. It says that

1ignoring the presence of domains and domain walls
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for ferromagnetism to occur it is necessary that the exchange interaction is high
enough and the density of states at the Fermi energy is high enough. Of all 3d
elements this is only satisfied in Fe, Co and Ni.

3.1 Domains and domain walls

In an ideal ferromagnetic sample all magnetic moments are aligned in one direc-
tion. In a real sample however domains can occur: In the material small regions
can be distinguished, the domains. Within each region the spins are pointing in
the same direction. Instead of global alignment now we have regions which all
have their own alignment, separated by domain walls. In the domain walls the
direction of the magnetization changes to that of the adjacent domain. Sizes of
domain walls are small compared to the size of domains.
There are various types of domain walls. A 180 ◦ domain wall separates domains
of opposite magnetization, a 90 ◦ domain wall separates domains with perpen-
dicular magnetization. A common type of 180 ◦ wall is a Bloch wall. In a Bloch
wall the magnetization is rotating in a plane parallel to the plane of the wall (see
fig.3.1). Another type of wall is the Néel wall. In a Néel wall the magnetization
rotates in a plane perpendicular to the plane of the wall.

Figure 3.1: a Bloch wall and b Néel wall. The vector normal to the thin film
plane is indicated as n̄v (Figure taken from ref. [7]).

One can wonder why a ferromagnetic material wants to make domains, since
the exchange energy tends to align all spins in the same direction and therefore a
domain wall and the presence of differently oriented domains costs energy. The
reason is that there is another energy involved, the dipolar energy. The dipolar
energy wants to lower the total magnetization of the whole sample. If at the
edges the magnetization is pointing out of the sample it costs energy because the
space surrounding the sample is filled with demagnetizing fields. This energy can
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be saved by breaking the sample into domains, which costs energy with respect
to the exchange energy but saves energy due to demagnetizing fields.
Due to the crystal structure a sample can have easy and hard axes. The easy
axis is the axis along which the sample is easy to magnetize, only a small field
is needed. The hard axis is the opposite, a high field is needed to magnetize the
sample in this direction. In a very small sample also Eanisotropic can be important.
It tends to align the direction of magnetization with the long axis of the sample
as it is energetically very unfavorable to align it perpendicular to the long axis, it
costs dipolar energy. This causes that in a long and narrow strip a stable domain
configuration is not easy to establish, except for some domains at the end of the
strip.
Dipolar energy can also determine the type of domain that can be formed. In a
bulk sample a Bloch wall is favored. In a thin sample a Néel wall tends to be
favored. In such a sample it is energetically very unfavorable to rotate spins out
of the plane of the film.

3.2 Hysteresis

Figure 3.2: Typical hysteresis loop for a ferromagnet. Indicated are the satura-
tion magnetization Ms, the remanent magnetization Mr and the coercive field Hc

(Figure taken from ref. [7]).

In fig.3.2 a typical curve of magnetization as function of applied magnetic field
is shown. It shows a hysteresis loop; if the applied magnetic field is increased
high enough the magnetization will reach the saturation magnetization MS. The
magnetization of the whole sample is pointing in the direction of the external field.
If the field is reduced the magnetization starts to rotate toward its easy directions,
domains walls are not yet moving. In general this happens without hysteresis,
the loop does not open yet. If the field is decreased further domains walls start to
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move. The walls jump from one local minimum to another and this process is not
reversible, it shows hysteresis. Following the hysteresis loop the field is reduced
to zero and the magnetization reduces to the remanent magnetization Mr. If then
the field again increases but now in opposite direction the magnetization finally
becomes zero at the coercive field Hc. Finally the domain walls stop moving and
the hysteresis closes. The last part towards the saturation magnetization the
magnetization in the domains rotates to the direction of the external field. It is
now entirely magnetized in opposite direction. In the same way the direction of
magnetization changes back to the original direction .

3.3 Anisotropic magnetoresistance

The change in resistance of a sample when placed in an external magnetic field
is called magnetoresistance [8]. The straightforward mechanism is of course the
Lorentz force experienced by a moving electron. The electron is now deflected and
begins to orbit until it is scattered. Because the curved orbit is longer than the
straight one and the concentration of scatterers is the same, the electron is scat-
tered more often, causing higher resistance. According to this simple picture the
resistance in a magnetic field is always higher than without field. This is called
ordinary magnetoresistance (MR). However, a much more important mechanism
in ferromagnets is the anisotropic magnetoresistance (AMR). In a material show-
ing AMR behavior the resistance does not depend only on the applied field but
also (more important) on the actual direction of the magnetization with respect
to the current flow (that is why it is called anisotropic). In most cases (also in Py)
the resistance is highest if current and magnetization are parallel and lowest if
they are perpendicular to each other. Because AMR depends on magnetization,
it shows hysteresis. In this way it is possible that the resistance in field is lower
than the resistance in zero field.

3.3.1 Origin of AMR effect

AMR can not be explained by the mechanism of the ordinary MR effect. A (not
entirely satisfactory) explanation needs the following ingredients: two-current
model, spin-orbit interaction and s-d scattering depending on the direction of
magnetization (all to be explained below). The explanation is given for strong
d-band ferromagnetic Ni-based alloys.

Two current model. Below TCurie the total amount of spin up electrons and
spin down electrons is conserved and therefore also the current carried by spin
up and spin down electrons. So it makes sense to consider the spin up and
spin down electrons as being two separate channels along which conduction can
take place. Each channel has its own diffusion constant at the Fermi level DF ,
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Fermi velocity vF and density of states at the Fermi level NF . The current is
carried by electrons near or at the Fermi level and the resistance of the channel is
determined by these electrons. The resistivity of the spin up channel is denoted
as ρ↑ and the resistivity of the spin down channel as ρ↓. In general ρ↑ and ρ↓
are not equal. This is the case since DF , vF and NF are all unequal for the two
channels. The d band of the majority spin channel (denoted as d↑) is full and
the other one (d↓) is not. As a result s↑ electrons can not be scattered in the d↑
band. s electrons are mainly responsible for the transport, d electrons are more
localized and have therefore a higher resistance. The absence of s-d scattering
for the majority channel leads to a lower resistance. In the other channel s-d
scattering is possible and there the resistance is higher.

Spin-orbit interaction. Spin-orbit interaction (SOI), the coupling between
the electron orbital motion and its spin, provides a way to mix the ↑ and ↓
channels. The SOI operator is given by

L · S = LxSx + LySy + LzSz = LzSz +
1

2
(L+S− + L−S+) (3.4)

where L± = Lx ± iLy and S± = Sx ± iSy and S and L are the spin and orbital
angular momenta respectively. The effect of L± is raising or lowering the ml value
of the electron. S± raises or lowers the spin quantum number. The operator in
equation 3.4 therefore acts as spin-flip operator and is able to mix the ↑ and ↓
channels. It takes 3d↑(ml) states into 3d↓(ml+1) states or 3d↓(ml) states into
3d↑(ml-1) states. Now there are 3d↑ holes and s↑ electrons can be scattered in
these holes, and the resistance of the ↑ band is now higher than without SOI.

Resistance anisotropy. With SOI s↑ electrons can scatter to 3d↓ states. It
also allows d↑ →s↓ transitions. This opens more 3d↑ hole states and allows
more s-d scattering by s↑ or s↓ electrons. But s electrons can only scatter into
3d hole states if their momentum is in the plane of the classical orbit of the
empty d state. The magnetization causes states with orbits perpendicular to the
direction of magnetization to be filled first, leaving those with orbits along the
magnetization direction empty. s electrons can only scatter in these d holes if the
magnetization is parallel to the current direction.

Conclusion According to the two-current model there are two separate chan-
nels, one for ↑ electrons and one for ↓ electrons. Taking ↑ as the majority spin
band, the resistance in the ↑ channel is lower than in the ↓ channel because the
d↑ band is full and electrons can not scatter to this band. SOI provides a method
to mix the spin channel. Now there are empty d↑ states and it is possible to
scatter to the d↑ band. But it depends on the direction of the magnetization if
there are empty states available. If the magnetization is parallel to the current

21



direction s-d scattering is possible and then the resistance becomes higher. In
total it means that the resistance of a Py sample is lower if the magnetization is
perpendicular to the direction of the current than if the magnetization is parallel
to the direction of the current.
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Chapter 4

Proximity effect

4.1 S/N structures

When a superconductor is in contact with a normal metal, Cooper pairs can enter
the normal metal by undergoing an Andreev reflection, and vice versa, an electron
in the normal metal can enter the superconductor at energies inside the band gap
by the same mechanism. In fig.4.1 the mechanism of the Andreev reflection is
explained. An electron e1 wants to enter the superconductor but it is not allowed
because it has an energy inside the gap, there are no eigenstates having the same
energy as e1. However, instead of a reflection at the interface it can undergo an
Andreev reflection. The electron takes an extra electron e2 from its environment
and enters the superconductor as a Cooper pair. In the normal metal a hole is
moving back along the path of the original electron. The spin and momentum of
the hole are opposite to those of the electron. If an electron from a Cooper pair
wants to enter the normal metal the procedure takes place in reversed order.
Close to the interface the normal metal will get some superconducting properties,
while the Cooper pair density in the superconducting material will decrease which
results in a locally suppressed gap near the interface. The region over which the
normal metal gains some superconducting properties is determined by the spatial
existence of Cooper pairs inside N. The Cooper pair density in the normal metal
will decay exponentially in space. The characteristic length scale of this decay

is called the normal metal coherence length, ξN ∼
√

~D
kBT

. Here it is assumed

that temperature is the main force which can break pairs and that we are in the
diffusive limit. This is always the case when using thin films. D is the diffusion
constant. When it is large, it means that a electron can travel a long distance
without dephasing. Inside S the formation of a Cooper pair takes place over a
certain length. This distance is the S coherence length, ξS.
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Figure 4.1: mechanism of Andreev reflection. The electron e1 with momentum k
wants to enter the superconductor from the normal metal. It can not follow path
1, because it does not have enough energy. Path 2 is not possible because there
is a gap and inside the gap are no states available. Path 3 is not possible either
because there all states are already filled. The only possibility is to take another
electron e2 with it and enter the S material together as Cooper pair. e2 leaves a
hole which travels backwards with momentum -k

4.1.1 BTK theory

In 1982 G.E.Blonder, M. Tinkham and T.M. Klapwijk (BTK) described the pos-
sible mechanisms taking place at an S/N interface [9]. They started from the
Bogoliubov-de Gennes equations (equations 2.28 and 2.29) and recognized that
in the superconducting state for each eigenvalue four different values for k exist
(k+, k−, −k+ and −k−, k+ is outside the Fermi sphere, k− is inside the Fermi
sphere), which all have Ek. Transitions from one k state to another are all ener-
getically allowed, but there is another constraint, namely that a particle which
travels with positive group velocity can only produce transmitted particles with
positive group velocity and reflected ones with negative group velocity. Accord-
ing to BTK an electron with energy Ek, momentum k+ and spin up approaching
a N/S interface from the N side has four possibilities (see fig.4.2 and fig.4.3 for
the probabilities):

• Andreev reflection. (∆ > Ek > 0) A Cooper pair enters the superconductor
and a hole with Ek, k

− and spin down is back reflected.

• ordinary reflection. (Ek > 0) An electron is reflected back into the normal
metal. This is only possible if the interface is not fully t+ransparent. Fully
transparent interfaces mainly exist in theoretical systems.
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Figure 4.2: Schematic diagram of energy vs. momentum at a S/N interface. 0
is the incident electron. 2,4,5 and 6 are the possible resulting particles. 2 is an
electron transmitted with branch crossing, 4 is a ordinary transmitted electron, 5
is a ordinary reflected electron and 6 is a reflected hole resulting from an Andreev
reflection (Figure taken from ref. [9]).

• ordinary transmission. (Ek > ∆) An electron enters the superconductor
as quasi-particle. This is only possible if the electron has an energy higher
than the gap.

• transmission with branch crossing. (Ek > ∆) The electron now has mo-
mentum −k− instead of k+.

4.2 S/F structures

If the neighboring material is a ferromagnet, the Cooper pair density not only
decays exponentially but also oscillates in space [10]. The characteristic length
scale of the exponential decay, the ferromagnetic coherence length ξF , is usually
much smaller than ξN . Instead of T , we now have Eex � kBT that does the

dephasing: ξF ∼
√

~D
Eex

. If a Cooper pair enters the ferromagnet the spin of

only one electron is parallel to the exchange field. The other one is antiparallel.
The electron with parallel spin looses potential energy and to conserve the total
energy its kinetic energy and therefore momentum will be higher. The potential
energy of the other electron will be higher and the kinetic energy and momentum
lower. As a result the Cooper pair has got a momentum |k↑ − k↓| > 0 and this
gives an oscillation in space. This is superimposed on the normal exponential
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Figure 4.3: Plots of transmission and reflection coefficients. Z is a measure for
the barrier strength at the interface. A gives the probability of an Andreev reflec-
tion, B gives the probability of reflection, C gives the probability of transmission
without branch crossing and D gives the probability of transmission with branch
crossing. Andreev reflections are most probable at energies below the gap, ordi-
nary transmission is only possible if the electron has an energy above the gap.
The probability of transmission with branch crossing is always very small (Figure
taken from ref. [9]).

decay. In fig.4.4 the oscillating behavior is shown. The oscillating behavior of
the order parameter will cause all quantities related to ∆ to oscillate as well. For
example the Tc of a S/F bilayer will have an oscillating decay dependence on the
F-layer thickness.

Figure 4.4: Oscillating behavior of the superconducting order parameter (Figure
taken from ref. [10]).
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4.2.1 Andreev reflection at an S/F interface

We can expect that the properties of Andreev reflections at an S/F interface are
different from those at an S/N interface [11]. Andreev reflections do not conserve
spin, an incoming spin-up electron produces an Andreev-reflected spin-down hole
(and a spin-down electron produces a spin-up hole). This is irrelevant if the
material is a normal metal but becomes relevant for a ferromagnet because the
two subbands are not equally occupied. We assume that the spin-up band is
the majority band. Then every incoming spin-down electron can be Andreev-
reflected into a spin-up hole. But not every spin-up electron can be Andreev-
reflected because there are not enough hole states in the minority band. This
means that the Andreev reflections are effectively suppressed.

4.3 F/S/F structures

The behavior of S/F structures leads to the idea that an F/S/F structure can be
switched from superconducting state to normal state by the relative orientation
of the magnetization of the F layers. This case was predicted theoretically by
Tagirov [1] and Buzdin [2] in the limit of a weak ferromagnet. A weak ferromagnet
means that Eex � EF and that there is no polarization. They examined an F/S/F
structure consisting of two identical F layers with a S layer in between. One of
the F layers is pinned by an antiferromagnet. In this way it is possible to have
a parallel (P) or antiparallel (AP) configuration of the direction of the exchange
fields. They found that a P configuration suppresses the superconductivity more
than an AP configuration. If the parameters are chosen properly, it should even
be possible to turn the superconductivity on and off by changing the direction of
the magnetization in one of the F layers and therefore it acts as a spin switch. The
origin of this behavior is that in the AP case the effects of both F layers cancel
each other, superconductivity is less suppressed. In the P case the layers do not
cancel, but enhance each other and superconductivity is more suppressed. This
was confirmed experimentally by Gu et al.[3]. However, Rusanov et al. showed
that the strong ferromagnet they have used yield the opposite effect [4]. They
used a different method to obtain a parallel and antiparallel configuration, the
usage of two different Py thicknesses. The thicker layer is assumed to switch at
lower fields than the other one. In this way it is possible to switch between parallel
configuration at low fields, antiparallel at higher fields and again parallel at high
fields. Apparently S/F structures with weak ferromagnets are quite different from
those with strong ferromagnets. A suitable theory of S/F structures with strong
ferromagnets is not available. We try to shed more light upon the strong F/S
mechanisms.
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4.3.1 Prediction for an ideal F/S/F spin switch

We assume that we have an ideal F/S/F spin switch. It is a sample with two
Py layers (thickness 50 and 20 nm) which switch independently. They do not
influence each other. The structure is small and there is no stable domain config-
uration. We expect that in such a structure the transmission of Cooper pairs to
the normal metal by Andreev reflection is very low. In an AP-state the pair can
enter the F-layers, both electrons can enter the majority spin band of one of the
layers. In the P-state this is not possible and the pair has to stay in the S-layer.
Therefore we expect that TP

c >TAP
c . This is different from a sample with weak

ferromagnets. A Cooper pair can enter a weak ferromagnet both in P-state and
AP-state. In P-state the electrons of the Cooper pair in the ferromagnet obtain
different potential energies and this leads to fast pair breaking and therefore de-
pletion of Cooper pairs at the S-side of the interface and a higher resistance. In
AP-state this does not happen, the electrons obtain the same potential energy
and the dephasing is less fast.
We will now return to the samples with strong ferromagnets. If we measure R
vs. H at a stable temperature in the transition, we expect that the resistance in
the P-state is lower than in the AP-state. The resulting curve looks as in fig.4.5.
The measurement is performed as follows:

• Saturation at large negative field. The magnetization of both layers is now
certainly pointing in the direction of the field.

• Field is decreased to zero. Layers stay in parallel configuration.

• Field is increased in opposite direction. At 5 mT the 50 nm layer switches
almost instantaneously. The layers are now antiparallel. The resistance of
the sample increases.

• At 10 mT the second layer switches. The layers are now again parallel and
the resistance decreases.

• Saturation at large positive field and measurement of the opposite direction.
The switching fields are now at -5 mT and -10 mT respectively.

We can also measure R vs. H at a temperature above the transition. We then
measure the AMR effect of the Py layers. The expected result is shown in fig.4.6.
The resistance decreases if the magnetization in the layers is perpendicular to the
direction of the current. This is only the case exactly at the field where one of
the layers switches and it produces large spikes.

28



Figure 4.5: Predicted result of a RH measurement in the transition. The switch-
ing fields are at 5 mT and 10 mT. Between 5 and 10 mT the configuration is
antiparallel and parallel otherwise. The antiparallel configuration has a higher
resistance.

Figure 4.6: Predicted AMR effect. The sample is the same as in fig.4.5. The
resistance is only lowered if one of the layers switches at its switching field.
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Chapter 5

Experimental methods

To investigate the properties of an F/S/F spinvalve we used Py as ferromagnet
and Nb as superconductor. Nb is a material with a relatively high Tc (9.3 K for
bulk Nb) and it is also easy to sputter. Py (Ni80Fe20) is a strong ferromagnet, Eex

is approximately 270 meV and it is 45 % spin polarized [5]. The Py/Nb/Py layers
were DC sputtered onto clean Si substrates in a UHV system. The base pressure
was ∼ 1·10−9 mbar. The used Ar pressure was 4.0 µbar for Nb sputtering and 2.5
µbar for Py sputtering. Some samples have a 2 nm Nb capping layer to prevent
oxidation of the top Py layer. This Nb layer does not become superconducting.
Magnetic sample holders were used to know with certainty the magnetic field
during sputtering because there is also a stray field in the UHV from the targets
and the direction of this stray field is not exactly known. The direction of the
magnetic field during sputtering determines the easy axes of the Py layers. After
sputtering the samples were patterned in strips by e-beam lithography (typically
1 µm×40 µm) and etched using an Ar plasma.
The strips are along the direction of the easy axis. Finally Au contacts were
made using a lift off procedure. The Au contacts were sputtered in the ATC.
This is a DC sputter system with a base pressure of about 2 · 10−7 Torr. Ti
was used as adhesion layer. The used Ar pressure was 3 mTorr. The contacts
consisted of ∼5 nm Ti and 100 nm Au.1 These contacts were used to perform
four point measurements. The voltage contacts were 10 µm apart and only this
part in the middle was measured. The samples were measured with the magnetic
field parallel to the strip. For all samples was performed: RT measurement
to determine Tc, for some samples in several fields, RH measurements in the
transition and above the transition as well, for some samples the resistance was
measured up to a higher field and for some IV curves were made. Samples with
Tc’s less than 2.5 K (with 20 nm Nb or less) were measured in a 3He cryostat.
The others were measured in a PPMS and/or in a standard 4He cryostat. The
3He cryostat is able to measure down to ±300 mK. There is a small magnet which

1Further details on sample preparation are given in appendix A. The dimensions and thick-
nesses of the measured samples can be found in appendix B.
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can produce fields from 0 mT to ±50 mT. The resistance was measured using a
lockin amplifier. This means that it is an AC measurement, but the results do
not differ much from a DC measurement. The used current was 1 or 10 µA. IV
curves were made using both a DC and AC signal and so at the same time dV/dI
was determined. The other samples were measured using DC current only.
Tc is determined using a 50% criterion; Tc is the temperature where the resistance
is decreased to 50% of the value above the transition. The transition width
(∆Tc) was measured between the data points at 10% and 90% of the value of the
resistance above the transition. All Tc’s were measured in a magnetic field to be
sure that the state of the Py layers is the same in all sample (saturated in one
direction). Usually a field of 50 mT was applied (20 mT for samples measured
in the 3He cryostat).
We also have done some RH measurements in and above the transition because
we want to manipulate the direction of the exchange field of the Py layers with the
external field. We usually measured the range ±20 mT. A typical measurement
would be: saturation at -100 mT to obtain a parallel state and measure from -20
mT to +20 mT. We expect the antiparallel or otherwise non-parallel state to be
between 0 and +10 mT. After that we do the reverse measurement.
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Chapter 6

Results and discussion

6.1 AMR

6.1.1 Bilayers

We want to compare P and AP states and therefore we need to know the state of
the F layers in our trilayer very well and control the switching of the layers. To
understand better the behavior of the trilayers we investigate the switching first
in bilayers to see how the individual layers behave. Two bilayers were made with
20 nm and 50 nm Py (bi20 and bi50), each with 10 nm Nb. The dimensions of
both samples were 40 µm ×2 µm. In fact they were made as if a trilayer with 20
nm Nb was cut in the middle of the Nb and divided into two separate samples.
The samples did not become superconducting, possibly due to localization effects.
This is not surprising, because a trilayer with 20 nm Nb is already very close to
the critical thickness of the system. For both samples AMR was measured at 2.0
K. The current and the applied field were both parallel to the long axes of the
strip. In fig.6.1 the results are shown for the 20 nm and 50 nm bilayer. The 20
nm bilayer shows a clear, reasonably symmetric AMR effect, with 1.5% resistance
change. We see the formation and movement of domains over abroad field range
of more than 10 mT, followed by a sharp switch back towards the homogeneous
state. The measurement shows that the switching field of the 20 nm layer is
around ±10 mT. The 50 nm bilayer sample does not show any AMR effect at all.
Not shown is a non-hysteretic dependence of the resistance on the field of 0.08%
of the total resistance. Most likely the layer switches very fast and therefore we
do not see it. The field steps in the measurement were 0.5 mT. This measurement
does actually look like the prediction in fig.4.6. Because the field steps are too
large, we can not see the spikes. It is the 20 nm sample which does unexpected
things.
The two samples seem to behave very differently. The main differences between
the samples are the thickness and the domain wall type. The 50 nm sample has
Bloch walls while the 20 nm sample has Néel walls [12]. The thickness causes that

32



the 50 nm layer carries more current and that an AMR signal (if there is any)
will be more visible, assuming that an AMR effect will have the same amplitude
in both layers. Because we see no AMR in the thickest layer, this is not simply
due to thickness alone. It is possible that Bloch walls can move easier than Néel
walls. Then a sample with Bloch walls can produce spikes but a sample with Néel
has much larger and broader dips. It is also possible that in the 20 nm sample
the Néel walls can cause a more stable domain configuration in the middle of the
strip where Bloch walls can occur at the ends of the strip. The length of the
strip is 40 µm but we measure only 10 µm in the middle of the strip. Domains
nucleated at the ends of the strip are not measured. Since a thicker layer should
enhance AMR, most likely it is a change in nucleation points and stable domain
configurations; a 20 nm layer has domains in the strip, a 50 nm layer has not.
The following explanations are not believed to be real possibilities: (1) The layer
does not switch. This seems impossible because in large negative field the mag-
netization should be in the opposite direction of the direction in large positive
field. (2) The layer switches but there is no current passing through this layer and
therefore no AMR. This seems improbable because then all the current should
pass through the thin Nb layer instead of the thick Py layer (the resistivities are
comparable).
Although we can not measure it directly, the 50 nm layer is believed to switch
around 5 mT.

Figure 6.1: The AMR effect in a bilayer with 10 nm Nb and 20 nm Py and in a
bilayer with 50 nm Py and 10 nm Nb. The sample with 20 nm Py shows 1.5%
AMR. It switches at 10 mT. The other sample does not show AMR.
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6.1.2 trilayers

Our trilayers show different types of AMR behavior, depending on their dimen-
sions. A trilayer is not just a combination of the two independent bilayers. We
have found two types of AMR behavior in different trilayers. None of them looks
similar to the prediction (fig.4.6) or to the measurements of the bilayers. The
first type is the type exhibited by 40 µm×2 µm samples. An example is shown in
fig.6.2. The sample is tri21 (Py(50)/Nb(18)/Py(20)). A second type of behavior
is shown by 40 µm×1 µm and 80 µm×1 µm samples. An example is given in
fig.6.3 (sample tri23 short, Py(50)/Nb(20)/Py(20)). For both types we see two
large blocks instead of four sharp peaks. For the first type they are closer to each
other and less sharp defined than for the second type. One of the peaks has a
more pointlike appearance. It is difficult to recognize the switching fields of the
separate Py layers in these samples.

Figure 6.2: The AMR effect in a 40×2 µm sample. This is an example of first
type behavior. The sample shows 2 blocks close to each other. It is not possible
to recognize the switching fields of the bilayers.

The second type type has clear, well separated blocks. The switching field of
the 20 nm Py layer is clearly distinguishable, and we expect the other jump to
coincide with switching of the 50 nm layer. Also in this sample one of the blocks
is a bit pointlike while the other is a real block.
We have also made large optically made structures to loose any lateral size effects.
They are very large (width 20 or 200 µm) and they have no blocks as can be seen in
fig.6.4 (sample tri30 large). The switching fields are very low (<5 mT) because
in these large structures the layers can switch more easily. It is not entirely
clear if the AMR signal is caused by one of the layers, the other layer switching
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Figure 6.3: The AMR effect in a 40×1 µm sample. This is an example of second
type behavior. The sample shows 2 blocks further apart than in the sample in
fig.6.2. In this sample the switching of one of the layers is clearly visible at 7.5
mT and -17.5 mT.

invisibly fast or that both layers switch at the same time. It is impossible to
see if there are two or four peaks. The behavior of these samples shows that the
lateral dimensions are important for the determination of Hc and the switching
behavior.

The graphs of AMR types one and two usually show some offset. The curves
are shifted up to 5.0 mT in the positive or negative direction. Sometimes this
can be caused by the remanent field of the magnet, especially if the samples are
measured in the PPMS. But also samples measured in the 3He cryostat show
this effect. The 3He cryostat has a very small magnet, the highest field we can
obtain is just 50 mT and it seems improbable that such a magnet can cause 2.5
mT offset. The samples tri30-tri34 do not have an offset. This may be due to
changes in the sample preparation. The origin of the asymmetry could be due
to the presence of an oxidized Py layer, which acts as an antiferromagnet, and
therefore an exchange bias, a not fully magnetized sample or the presence of spa-
tially non-symmetric pin centers for domain walls.
For some particular samples we have seen a change of direction of the asymme-
try (offset and/or differently shaped blocks) after warming the sample to room
temperature and cooling down again. See the example of sample tri23 short in
fig.6.5. This sample was measured in the 3He cryostat (AMR1) then warmed
to room temperature and again cooled down (the reason for doing this was an
empty He vessel). After doing this the measurement was repeated (AMR2). The
result looked completely different but this was solved by interchanging the + and
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Figure 6.4: The AMR effect in a optically structured sample (tri30 large,
width=200µm). The curve has two peaks, apparently both layers switch at al-
most the same field or one of the layers is not visible.

- signs of the field (AMR2 mirrored). This observation suggests the presence
of a layer which causes exchange bias, probably an antiferromagnet with a Néel
temperature between 10 K and 300 K. When the sample is cooled down, the
exchange bias points in a certain direction and can not change direction until it
warmed to room temperature.
It is important to know that the AMR measurement measures only the 10 µm
in the middle of the strip. The other parts of the strip we do not measure. It
is possible that the domain configuration in those parts and therefore the resis-
tance in those parts changes without changing the resistance in the measured
part. Therefore a non-changing AMR signal does not mean that the domain
configuration is not changing.
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Figure 6.5: The AMR effect before (AMR1) and after (AMR2) warming and
cooling down again. AMR2 has changed the direction of the asymmetry with
respect to field.

Figure 6.6: (left axis) AMR percentage vs. Nb thickness (right axis) AMR resis-
tance difference per unit volume Py vs. Nb thickness. This shows that in case
of a 50 nm Nb trilayer the dimensions are not important with respect to AMR.
The amount of AMR is the same for all dimensions. The 10 Nb data point is a
bilayer with 20 nm Py which fits exactly where we expect a 10 nm Nb trilayer to
be. The other bilayer with 50 nm Py shows no AMR.
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6.2 AMR vs. Nb thickness

The AMR percentage depends on the thickness of the Nb layer. In fig.6.6 (left
side) the AMR percentage is given as function of Nb thickness. The sample with
10 nm Nb is not a trilayer but a bilayer with 20 nm Py. There are several samples
with 50 nm Nb. They differ only in dimensions and direction of the easy axis.
The sample dimensions are: one sample 2.5 mm×200 µm, one sample 1 mm×20
µm and three samples 40 µm×1 µm, of which two samples are structured under
an angle of 45 ◦ with respect to the easy axis. All 50 nm samples have more
or less the same % AMR. The right side of the same figure gives the resistance
difference caused by AMR per unit volume Py. The 50 nm samples all give almost
the same result. This is surprising because the samples have different dimensions,
the small samples are nearly single domain structures and the large samples have
many domains. The shapes of the AMR curves are also very different. The
relative amount of magnetization perpendicular to the current direction however
seems to be almost equal regardless of the sample dimensions.
The bilayer with 10 nm Nb was supposed to fit more at 20 nm Nb thickness,
because it is basically a 20 nm trilayer cut in half. It is more like a 10 nm
trilayer as the Nb thickness actually is. It seems that the amount of AMR of
a s/Nb(10)/Py(20) bilayer and a s/Py(50)/Nb(10)/Py(20) trilayer is the same
(but the shapes are completely different) and this suggests that the 50 nm Py
layer does not have any influence on the size of the AMR signal. But the layer
does definitely influence the shape of the AMR signal.

6.3 Tc vs. Nb thickness

The Tc of samples with different Nb thicknesses was measured. In this way it was
possible to determine the critical thickness of this system and hence which are
useful to measure RH curves. The results are given in fig.6.7. The measurements
were all done in a field such that the ferromagnetic layers were certainly saturated
in one direction (µ0H=20 or 50 mT).
As can be seen, Tc decreases with decreasing thickness. The decrease is faster
with decreasing thickness. Below a certain thickness the sample can not be
superconducting anymore. This thickness is the critical thickness and here it
is somewhere between 17.0 and 18.0 nm. The reason for this is that the Nb
layer needs at least 2-3 ξ0 to become superconducting, where ξ0 =

√
~D

2πkbTc
. It

can not be much less, because ξ is the length the sample needs to build up its
full gap. The gap has its minimum at the interfaces and reaches its maximum
value between the two interfaces. Therefore the sample needs at least 2-3 ξ. In
that case ξ0 of these samples is about 6-9 nm, which is reasonable because it is
accordance with other estimates.
Two examples of RT measurements are given in fig.6.8 for samples with 20 and
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50 nm Nb. The thinnest sample has the broadest transition. This is the case for
all samples as can be seen in fig.6.9.

Figure 6.7: Tc as function of Nb thickness in the trilayer s/Py(50)/Nb/Py(20).
The critical thickness of this sample is around 18 nm.

Figure 6.8: The transition is broader if the sample is thinner as can be seen from
these two samples with 20 and 50 nm Nb.
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Figure 6.9: The transition width as function of Nb thickness.

6.4 H-dependence of RT curves

If TP
c 6= TAP

c , we can expect that the RT curves are non-identical as well. We
measure RT as function of H to examine this behavior.
In fig.6.10 the result is shown for a sample with 19 nm Nb (tri22). The field
started at µ0H=-20 mT and was increased to 0 mT and again increased to 10
mT. We expect that we start in a P-state, then go to an AP-state and end in a
P-state. The Tc is lowest if µ0H=0 and 5 mT and highest if µ0H= -20, -10 and
10 mT, and in between if µ0H=-5 mT. The minus sign denotes the direction of
the field. The sample was saturated at -20 mT. The fields where the Tc is high
are supposed to cause a parallel configuration and the low Tc’s are connected to
an antiparallel configuration. For weak limit CuNi a shift in RT’s was found [3]
of about 10 mK at a TAP

c =2.8 K and TAP
c >TP

c . For our sample the transition
towards superconductivity seems to start at the same point for all fields but the
RT curves broaden out for the non-P states and TAP

c <TP
c .

Fig.6.11 shows tri23 short, with 20 nm Nb. The measurement shows clearly
the difference between the measurements with different fields. This is the sample
which shows the biggest difference between TAP

c and TP
c . The difference is 95

mK at Tc (halfway the transition). The Tc not only broadens but is also shifted.

6.5 RH curves in the transition

Knowing the switching fields from AMR measurements, we now investigate how
the spin switch behaves in the normal to superconducting state transition. Here
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Figure 6.10: a s/Py(50)/Nb(19)/Py(20) sample. The dimensions are 2×40 µm.
RT was measured in several fields. It shows clearly the dependence on field. The
inset shows the dependence of Tc on field. (Tc was measured halfway the transition
at ±3 Ω)

Figure 6.11: A sample with 20 nm Nb. The difference between the two curves is
clearly visible.

∆ starts to develop, mostly shortcutting all resistive parts like Py layers. We now
measure VNb instead of VPy as in the AMR measurements. The resistance in these
measurements is mainly due to inhomogeneous parts of ∆, thus to properties of
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the Nb layer.

6.5.1 General behavior

Figure 6.12: Resistance as function of field for a sample with 50 nm Nb (tri16-L).
Also shown is the RT of the same sample.

Figure 6.13: Resistance as function of field for a sample with 20 nm Nb (tri23
short). Also shown is the RT of the same sample. (Note that the sample has a
shortcut somewhere, the resistance below Tc is about 5 Ω.)

We measured samples in the PPMS, in the 3He cryostat and in the 4He cryo-
stat. Sample tri16-L in fig.6.12 was measured in the PPMS. Because the PPMS
can only measure above 2 K and we wanted to measure at lower temperatures, we
measured the next samples in the 3He cryostat, for example sample tri23 short in
fig.6.13. The last samples were measured above 2 K but because the PPMS did
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Figure 6.14: Resistance as function of field for a sample with 50 nm Nb (tri34
0 ◦). Also shown is the RT of the same sample.

Figure 6.15: Resistance as function of field for a sample with 50 nm Nb (tri30
large). This is a large optically structured sample. Also shown is the RT of the
same sample.

not have the desired temperature and magnet control, we measured them in the
4He cryostat where the magnetic field steps are much smaller. Sample tri34 0 ◦

was measured in this way (fig.6.14). Fig.6.15 shows a large sample (2.5 mm×200
µm) measured in the same cryostat.
In general the resistance increases where we suppose the Py layers are antipar-
allel or otherwise non-parallel. There they make a block with usually a dip in
the middle of the block. In most samples there is a sharp decrease in resistance
at ±10 mT, very large samples do this at a lower field. Then the switch is also
less sharp. At lower T the blocks are narrower, because then the gap is more
developed are less influenced by the Py layers.
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6.5.2 Measurement at higher field

To determine if the increase in resistance is caused by the direct effect of the
external field or an antiparallel state it is possible to check at which higher field
the resistance is as high as in the assumed antiparallel state. If this field is
very low it is possible that the superconducting properties are suppressed by the
external field or the field from a domain wall in the Py layers penetrating the
superconductor. The external field needed to increase the resistance with the
same amount as the ’antiparallel state’ does, is about 150 mT (an example of
a measurement is shown in fig.6.16, there the external field to get the required
resistance increase is a bit higher, almost 190 mT.). This is a much higher field
than we use to switch the Py layers and therefore the results we see are caused
by the ferromagnets and not the external field. From this measurement it is not
possible to know with certainty if the resistance increase is caused by an AP
state or stray fields penetrating the superconductor. But if the stray fields are
responsible, they should cause a field of at least 150 mT in the superconductor.
The resistance then increases only in the neighborhood of a domain wall, so
the field should actually be higher than this value to cause the same resistance
increase.

Figure 6.16: A measurement at higher fields. The sample is tri34 45 ◦. This shows
that almost 190 mT was needed to increase the resistance the same amount as
the antiparallel state did.
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6.5.3 Connecting RH to AMR

The similarities between RH(T>Tc) and RH(T<Tc) become more striking when
we compare them directly. This is done for sample tri23 short in fig.6.17. The
measurements in the transition have blocks at the same fields as the AMR mea-
surements have dips. From this measurements and other measurements in the
3He cryostat we see that saturation is very important. Because the magnet of
the 3He cryostat is very small, it is difficult to saturate the sample well. If the
sample is not well saturated, we see switching in multiple steps. We want to do
a careful measurement with different saturation fields to see the dependence on
saturation field.

Figure 6.17: Resistance as function of field, above and in the transition. The
sample makes blocks in the transition where the AMR shows dips. The sample is
tri23 short.

6.5.4 AMR shape and saturation

The shape of the AMR curve also depends on the way the sample was saturated
and on previous measurements. In fig.6.18 a series of AMR measurements is
shown. The sample is tri34 0 ◦. The measurement was as indicated in the figure.
We see large dips which begin more or less at the same field for every measurement
(at the left side at -4.1 mT and -3.1 mT and at the right side at 4.5 mT and
3.4 mT). They switch in multiple steps, switches are visible at -13.9 mT, -13.0
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Figure 6.18: 8 AMR measurements under different conditions. Indicated in the
legend are the external fields at which the measurement was started and ended
(in mT). They give rise to different domain states and cause different switching
fields. All blocks begin at the same field. The sample is tri34 0 ◦

mT, -10.0 mT, -7.6 mT, -6.3 mT and -5.2 mT at the left side and at 12.0 mT,
10.1 mT, 8.5 mT, 7.2 mT, 6.2 mT and 5.2 mT. Between the switches plateaus
are visible at 0.995, 0.996, 0.998 and 0.999 of the normalized resistance and an
additional one at the right side at 0.997. The plateaus indicate stable domain
configurations. The shape of the AMR curve depends on the way the sample was
saturated and on previous measurements. Each measurement has a small and a
large dip. The first measurements have the large dip at the right side and the
small dip at the left side but this is reversed after warming the sample to room
temperature.

Similar measurements as the last three AMR measurements were performed
in the transition. They are given in fig.6.19 together with the AMR. The mea-
surements in the transition exactly follow the shape of the AMR measurements,
especially at the left side of the figure. The same plateaus and switches as in the
AMR measurement are present in the transition. The switches in the measure-
ments in and above the transition are coupled. As shown in fig.6.20 this is not the
case in a large optically structured sample (sample tri30 large). The large struc-
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Figure 6.19: AMR combined with measurements in the transition. The satura-
tion conditions are the same for both measurements. The measurement in the
transition exactly follows the AMR shape. The sample is tri34 0 ◦

ture has larger and broader blocks than AMR dips. The switches are not at the
same fields. This can mean that in a small strip the switching both in normal and
superconducting state is governed by shape anisotropy. In a large sample there is
no shape anisotropy and the gap in the superconductor completely changes the
switching fields of the Py layers. They become higher, so apparently the domain
walls are pinned. In the normal state there is no gap which can influence the
switching and then the layers switch faster.
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Figure 6.20: Resistance as function of field, above and in the transition. The
AMR has narrow dips while in the transition broader and more block like features
appear. This is sample tri30 large

Figure 6.21: Two samples with different orientations of the easy axis. The 45 ◦

sample was structured with a 45 ◦ angle with respect to the supposed easy axis.
This sample seems to switch at lower fields than the 0 ◦ sample, structured along
the easy axis. The samples are tri34 0 ◦ and tri34 45 ◦
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6.5.5 AMR shape and easy axis

All these samples are supposed to have the easy axis aligned along the strip.
To see if it is really crucial to have the easy axis in that direction or that the
switching is entirely governed by shape anisotropy one sample (tri34) was made
with two strips plus contact pads, one normal strip and the other strip under
an 45 ◦ angle with respect to the supposed easy axis. Both strips have the same
dimensions. They are measured with the strips parallel to the field. The AMR
results are shown in fig.6.21. For both three measurements are shown, saturated
in the same way (one time saturated at -200 mT and measured from -20 mT to
+20 mT and reverse, two times measured from +50 mT to -50 mT and reverse
without saturation). The AMR percentage is for both samples about 0.5%. The
AMR dips begin at the same field but the 45 ◦ sample seems to switch back at
a lower field, the dips are narrower. Although the measurement is not entirely
conclusive, this seems to tell us that the direction of the easy axis influences the
domain states the sample can enter. The direction of the easy axis causes the
sample to enter and leave certain domain states more easily.

6.6 IV’s

We also measured IV’s to see if the resistance increase in the transition is caused
by flux flow. IV’s are measured for sample tri23 (20 nm Nb). The measurements
as function of temperature are measured for a 80 µm long sample, the others for
a 40 µm long sample. The IV’s are reasonable symmetric. In fig.6.22 some IV’s
are given as function of temperature. This can be used to determine the Tc of the
sample, because when it is a straight line it means that it is not superconducting
anymore. The only problem is that it is very difficult to see if it is straight. It is
better to use the derivative, dV/dI. This can be measured at the same time as
the IV and is given in fig.6.23.

We can use this data to determine Ic(T) and from the temperature dependence
the possibility that these Ic’s are caused by flux flow or by depairing currents.
If it is depairing current Ic ∝ (1 − T/Tc)

3/2. We want to see if this temperature
dependency is compatible with the data. The critical current is taken to be at
the peak of the curves in fig.6.23, which is not entirely true but easiest to measure
and the error is not too large. The result is given in fig.6.24 where we omitted
the point at 2.5 K because that is already above the transition. The fitting curve
gives a value for Tc and a constant which is not important at this moment. The
fitted Tc is 2.8 K which is about 0.4 K higher than the measured one. The error
can be caused by the assumption that the order parameter is constant in the
whole S layer which is certainly not true. Another possibility is that the F layers
cause such changes in the S layer that the theory is not able to handle them.

It is also possible to measure IV’s as function of field. We expect that the
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Figure 6.22: IV curve for sample tri23 long. µ0H=20 mT

Figure 6.23: dV/dI vs. I curve for sample tri23 long. µ0H=20 mT. The tem-
perature at which the gap starts to develop (here between 2.3 K and 2.5 K) is
Tc.

gap becomes wider in the parallel configuration and then the IV deviates from a
straight line. The results are shown in fig.6.25-6.28 for two different temperatures
together with a RH measurement at the same temperature (be aware that the
sample has a shortcut and that the resistance below Tc is about 5 Ω). The
fields at which the IV’s are measured are indicated with arrows. The sample was
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Figure 6.24: Ic vs. T as taken from fig.6.23, with fit to theory.

first measured at 2.1 K (fig.6.25 and 6.26). The broadest curve in fig.6.25 is the
one with µ0H=16 mT(parallel configuration). The µ0H=12.5 mT curve has the
smallest gap and is apparently at the top of the block. The behavior of all curves
is essentially the same. There is no change in behavior if one goes from parallel
to non-parallel state and this makes flux flow less probable. We measured this
sample at I=10 µA and there the behavior is completely regular.

The same sample was measured at a lower temperature (1.8 K). The gaps
are now wider. Around 0 A the 18 mT curve is now completely flat. The curve
maybe looks like those connected to flux flow but at this field the resistance is
lowest (see fig.6.28) and the other curves where there can be flux flow because
the resistance is higher, are not flat around 0 A. The 10 mT curve shows strange
bumps at higher currents, which are also vaguely visible in the 18 mT and 4 mT
curve. Their origin is unknown.
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Figure 6.25: dV/dI at T=2.1 K. The sample was saturated at µ0H=-20 mT. The
gap width shows large variation with applied field. It becomes wider if the field
causes a lower resistance in the RH measurement. The RH measurement at the
same temperature is shown in fig.6.26.

Figure 6.26: RH at T=2.1 K. The applied fields used in the dV/dI measurement
are indicated with arrows.
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Figure 6.27: dV/dI at T=1.8 K. The sample was saturated at µ0H=-20 mT. The
gaps are now wider than at 2.1 K. The 18 mT curve has a flat part around 0 A.
At higher currents there are strange bumps visible of unknown origin.

Figure 6.28: RH at T=1.8 K. The applied fields used in the dV/dI measurement
are indicated with arrows.
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Chapter 7

Discussion and conclusion

Now we can come back to the question of whether the stray fields of the domain
walls in a domain state are responsible for the resistance difference between P
and non-P states or that we have an effect of the P and AP states. We will argue
below that it is very unlikely that the domain walls are responsible and we believe
that the mechanism for this difference is the intrinsic nature of the P state to
confine Cooper pairs. We believe that this confinement starts to dominate over
the weak limit effects when the polarization has sufficiently reduced the Andreev
reflection process.
Via IV we tried to exclude flux flow and via high field measurements we tried to
rule out a global change in the superconducting gap. Field averaging of Cooper
pairs near domain walls rules out itself since it should result in opposite sign.
High field measurements show that the applied field needed to increase the resis-
tance the same amount as the non-P alignment of the Py layers does, is about 150
mT. This field is much higher than the fields we use. It shows that the external
field does not influence the Nb layer much, it only switches the Py layers. It is
possible that the field from a domain wall penetrating the superconductor locally
exceeds 150 mT and causes resistance increase, but this can only happen exactly
where a domain wall exists and it is unlikely that it increases the resistance of
the whole strip.
The IV curves show no indication for flux flow. The critical current has a tem-
perature dependency as expected in case of a depairing current. The dV/dI
measurements show that the gaps become wider when the resistance decreases,
as expected. The gaps become wider with decreasing temperature.
We think that this experimental evidence shows that the resistance increase is
caused by P and AP states and not by domain walls which cause stray fields.

Conclusion We investigated the transport properties of a superconducting
spin valve system. The superconductor Nb was sandwiched between two Py
(permalloy=Ni80Fe20) layers. In particular we were interested in the difference in
resistance between a parallel (P) and antiparallel (AP) alignment of the direction
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of the exchange fields of the Py layers. Strips with typical dimension 40 µm×1
µm were fabricated in order to induce high anisotropy which favors homogeneous
magnetization in the F layers. The thickness of the F layers was fixed at 20 nm
and 50 nm, resulting in coercive fields of 10 mT and 5 mT respectively, and so
switching between P and AP states was possible. The Nb thickness was varied
between 15 and 70 nm. In plane measurements were performed with applied
external fields directed along the long side of the strip.
Anisotropic magnetoresistance (AMR) measurements on the spin valves in the
normal state (T>Tc) shows that the manipulation of the direction of exchange
fields is less ideal than expected. Based on the observed plateaus we conclude
that domain states appear (a stable domain configuration in the Py layers which
is neither fully P nor fully AP) rather than a fully AP state. This non-parallel
(non-P) state brings along the effects of domain averaging and flux.
Transition temperature (Tc) measurements versus Nb thickness show the stan-
dard monotonous decrease of Tc with decreasing thickness with a critical thickness
between 17 and 18 nm. The transition width increased from less than 50 mK at a
thickness of 70 nm to over 200 mK at 18 nm thickness. Resistance measurements
as function of temperature (RT measurements) for various applied fields around
Tc show that the RT curves shift and broaden out to a lower value when the spin
valve switches from P to non-P. A typical shift was of the order of 10 mK, the
largest we found was 95 mK (for 20 nm Nb thickness).
AMR measurements on 40 µm×1 µm strips show clear jumps and plateaus in the
resistance, which become less well defined for dimensions of 40 µm×2 µm and
completely disappear for large 2.5 mm×200 µm structures (instead we see the
usual AMR behavior). Lowering the temperature to values inside the transition
region enables us to investigate how the superconducting gap as influenced by the
P and non-P states. We observe very similar behavior as in the AMR measure-
ment, however, instead of rectangular dips we now see rectangular peaks. The
peaks appear at the same applied fields as the AMR dips, and also the observed
plateaus are matching.
We think that this resistance increase in the transition is caused by P and AP
states of the F layers. IV measurements and high field measurements showed that
it is unlikely that stray fields of domain walls are responsible for the resistance
increase.
The shape of the AMR signal depends on the field used to saturate the sample.
We found that in a sample with 50 nm Nb this has to be at least 50 mT. If it
is less the sample will be not entirely saturated and parts of it will switch at a
lower field than expected. This is the case in RH measurements above as well as
in the transition. If the direction of the easy axis is not aligned with the strip,
the sample can switch differently. In case of a 45 ◦ angle the sample seems to
switch earlier than a sample with 0 ◦ angle.
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Appendix A

How to make a trilayer sample

• clean substrates (7 mm×14 mm) with

– demi-water

– acetone

– IPA

• Py/Nb/Py sputtering

– use magnetic sample holder

– tilt sample holder to align with sputter target (224 ◦ (horizontal state)
for Nb, 179 ◦ for Py)

– Nb sputter parameters: pAr=4.0 µbar, I=220 mA, V≈320 V, sputter
rate =0.118 nm/s

– Py sputter parameters: pAr=2.5 µbar, I=165 mA, V≈470 V, sputter
rate = 0.203 nm/s

• spincoat resist (maN 2405) at 6000 rpm

• bake resist at 90 ◦C for 10 min.

• write strips using the SEM

– 10 mm work distance, aperture 2

– 100µm×100µm write field, zoom factor 600

– beam current =0.1 nA, dose = 45 µC/cm2

• develop in maD for 70 s followed by demi-water dip

• Ar etching

– use N2 cooling and rotating sample holder
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– use recipe 10 and 2.5·10−4mbar Ar

– etch rate: 0.33 nm/s (Py), 0.22 nm/s (Nb)

• 45 min. Acetone dip to remove remaining resist

• spincoat resist (PMGI SF5) at 4000 rpm

• bake resist at 200 ◦C for 60 min.

• spincoat resist (PMMA A4) at 4000 rpm

• bake resist at 160 ◦C for 30 min.

• write contacts (SEM)

– 20 mm work distance, aperture 2

– 3 mm×3 mm write field, zoom factor 20

– beam current =10 nA, dose = 200 µC/cm2

• develop in MIBK:IPA=1:3 for 35 s., followed by IPA dip

• develop in PMGI 101 for 5 min., followed by demi-water dip

• contact sputtering (ATC)

– pAr=3 mTorr, Ar flow≈25 sccm

– Ti target has to be presputtered for about 15 min (I=200 mA)

– Ti sputter parameters: I=400 mA, 60 s.

– Au sputter parameters: I=100 mA, 10 min.

• lift off in NMP (several hours)
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Appendix B

List of measured samples

In the following table B.1 the dimensions and thicknesses of the layers are given
for all samples that have been mentioned previously. From left to right are given:
the sample number, the thickness of the bottom Py layer, the thickness of the
Nb layer, the thickness of the top Py layer, the presence of a 2 nm thick Nb
capping layer and the dimensions of the strip. The length of the tri30 samples
was measured between the voltage contacts as the whole length is less well defined
(it includes current contact pads).
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sample ID Py thickness Nb thickness Py thickness Nb cap dimensions
(nm) (nm) (nm) y/n

bi20 - 10 20 n 40 µm×2 µm
bi50 50 10 - n 40 µm×2 µm

tri16-L 50 50 20 n 40 µm×2 µm
tri17 50 70 20 n 40 µm×2 µm
tri18 50 30 20 n 40 µm×2 µm
tri19 50 15 20 n 40 µm×2 µm
tri21 50 18 20 n 40 µm×2 µm
tri22 50 19 20 n 40 µm×2 µm

tri23 long 50 20 20 n 80 µm×1 µm
tri23 short 50 20 20 n 40 µm×1 µm
tri30 small 50 50 20 n 1 mm×20 µm
tri30 large 50 50 20 n 2.5 mm×200 µm
tri32 45 ◦ 50 50 20 y 40 µm×1 µm
tri34 0 ◦ 50 50 20 y 40 µm×1 µm
tri34 45 ◦ 50 50 20 y 40 µm×1 µm

Table B.1: Thicknesses and dimensions of the measured samples.
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